Check if it is possible to rearrange rectangles in a non-ascending order of breadths
Given n number of rectangles with it’s L-length and B-Breadth. We can turn any rectangle by 90 degrees. In other words, after turning them, the breadth will become length and length will be breadth.
The task is to check if there is a way to make the rectangles go in order of non-ascending breadth. That is, a breadth of every rectangle has to be not greater than the breadth of the previous rectangle.
Note: You can not change the order of the rectangles.
Examples:
Input: 3
l = 3, b = 4
l1 = 4, b1 = 6
l2 = 3, b2 = 5
Output: YES
The given breadths are [ 4, 6, 5 ] we can rotate the second and the third rectangle so that the breadths will satisfy the above condition [ 4, 4, 3 ] ( 3 is not greater than 4 and 4 is not greater than 4 ) which is why we print YES.
Input: 3
1 60
70 55
56 80
Output: NO
The breadths are [ 60, 55, 80 ] as 55 55 or 56 > 55. So it’s not possible to arrange the breadths in non-ascending order, which is why we’ll print NO.
Approach: Below is the step by step algorithm to solve this problem:
- Initialize n rectangle with their lengths and breadths.
- Iterate over the rectangle from left to right.
- Turn each rectangle in such a way that it’s breadth is as big as possible but not greater than the previous rectangle.
- If on some iteration there is no such way to place the rectangle, the answer is “NO”
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to check if it possible to form // rectangles with heights as non-ascending int rotateRec( int n, int L[], int B[]) { // set maximum int m = INT_MAX; for ( int i = 0; i < n; i++) { // replace the maximum with previous maximum if (max(L[i], B[i]) <= m) m = max(L[i], B[i]); // replace the minimum with previous minimum else if (min(L[i], B[i]) <= m) m = min(L[i], B[i]); // print NO if the above // two conditions fail at least once else { return 0; } } return 1; } // Driver code int main() { // initialize the number of rectangles int n = 3; // initialize n rectangles with length and breadth int L[] = { 5, 5, 6 }; int B[] = { 6, 7, 8 }; rotateRec(n, L, B) == 1 ? cout << "YES" : cout << "NO" ; return 0; } |
Java
// Java implementation of above approach import java.io.*; class GFG { // Function to check if it possible to form // rectangles with heights as non-ascending static int rotateRec( int n, int L[], int B[]) { // set maximum int m = Integer.MAX_VALUE; for ( int i = 0 ; i < n; i++) { // replace the maximum with previous maximum if (Math.max(L[i], B[i]) <= m) m = Math.max(L[i], B[i]); // replace the minimum with previous minimum else if (Math.min(L[i], B[i]) <= m) m = Math.min(L[i], B[i]); // print NO if the above // two conditions fail at least once else { return 0 ; } } return 1 ; } // Driver code public static void main (String[] args) { // initialize the number of rectangles int n = 3 ; // initialize n rectangles with length and breadth int L[] = { 5 , 5 , 6 }; int B[] = { 6 , 7 , 8 }; if (rotateRec(n, L, B) == 1 ) System.out.println( "YES" ); else System.out.println( "NO" ); } } // This Code is contributed by inder_verma.. |
Python3
# Python3 implementation of above approach import sys; # Function to check if it possible # to form rectangles with heights # as non-ascending def rotateRec(n, L, B): # set maximum m = sys.maxsize; for i in range (n): # replace the maximum with # previous maximum if ( max (L[i], B[i]) < = m): m = max (L[i], B[i]); # replace the minimum # with previous minimum elif ( min (L[i], B[i]) < = m): m = min (L[i], B[i]); # print NO if the above two # conditions fail at least once else : return 0 ; return 1 ; # Driver code # initialize the number # of rectangles n = 3 ; # initialize n rectangles # with length and breadth L = [ 5 , 5 , 6 ]; B = [ 6 , 7 , 8 ]; if (rotateRec(n, L, B) = = 1 ): print ( "YES" ); else : print ( "NO" ); # This code is contributed by mits |
C#
// C# implementation of above approach using System; class GFG { // Function to check if it possible // to form rectangles with heights // as non-ascending static int rotateRec( int n, int []L, int []B) { // set maximum int m = int .MaxValue ; for ( int i = 0; i < n; i++) { // replace the maximum with // previous maximum if (Math.Max(L[i], B[i]) <= m) m = Math.Max(L[i], B[i]); // replace the minimum with // previous minimum else if (Math.Min(L[i], B[i]) <= m) m = Math.Min(L[i], B[i]); // print NO if the above // two conditions fail // at least once else { return 0; } } return 1; } // Driver code public static void Main () { // initialize the number // of rectangles int n = 3; // initialize n rectangles with // length and breadth int []L = { 5, 5, 6 }; int []B = { 6, 7, 8 }; if (rotateRec(n, L, B) == 1) Console.WriteLine( "YES" ); else Console.WriteLine( "NO" ); } } // This code is contributed // by inder_verma |
PHP
<?php // PHP implementation of above approach // Function to check if it possible // to form rectangles with heights // as non-ascending function rotateRec( $n , $L , $B ) { // set maximum $m = PHP_INT_MAX; for ( $i = 0; $i < $n ; $i ++) { // replace the maximum with // previous maximum if (max( $L [ $i ], $B [ $i ]) <= $m ) $m = max( $L [ $i ], $B [ $i ]); // replace the minimum // with previous minimum else if (min( $L [ $i ], $B [ $i ]) <= $m ) $m = min( $L [ $i ], $B [ $i ]); // print NO if the above two // conditions fail at least once else { return 0; } } return 1; } // Driver code // initialize the number // of rectangles $n = 3; // initialize n rectangles // with length and breadth $L = array (5, 5, 6 ); $B = array ( 6, 7, 8 ); if (rotateRec( $n , $L , $B ) == 1) echo "YES" ; else echo "NO" ; // This code is contributed // by Shashank ?> |
Javascript
<script> // javascript implementation of above approach // Function to check if it possible // to form rectangles with heights // as non-ascending function rotateRec( n, L, B) { // set maximum var m = Number.MAX_VALUE for ( var i = 0; i < n; i++) { // replace the maximum with // previous maximum if (Math.max(L[i], B[i]) <= m) m = Math.max(L[i], B[i]); // replace the minimum with // previous minimum else if (Math.min(L[i], B[i]) <= m) m = Math.min(L[i], B[i]); // print NO if the above // two conditions fail // at least once else { return 0; } } return 1; } // Driver code // initialize the number // of rectangles var n = 3; // initialize n rectangles with // length and breadth var L = [ 5, 5, 6 ]; var B = [ 6, 7, 8 ]; if (rotateRec(n, L, B) == 1) document.write( "YES" ); else document.write( "NO" ); </script> |
NO
Time Complexity: O(n), since there runs a loop for n times.
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...