Given two positive integers **X** and **Y**, the task is to check if it is possible to reach **(X, Y)** from **(1, 0)** by the given steps. In each step, possible moves from any cell **(a, b)** are **(a, b + a)** or **(a + b, b)**. Print **“Yes”** if possible. Otherwise, print **“No”**.

**Examples:**

Input:X = 2, Y = 7Output:YesExplanation:Sequence of moves to reach (2, 7) are: (1, 0) -> (1, 1) -> (2, 1) -> (2, 3) -> (2, 5) -> (2, 7).

Input:X = 30, Y = 24Output:No

**Naive Approach:** The simplest approach is to try to move from points **(X, Y)** to** (1, 0)** recursively by using the operation **(X – Y, Y)** or **(X, Y – X) **until it becomes equals to** (1, 0)**. If the **X**-coordinate becomes less than **1 **or** Y**-coordinate becomes less than **0**, then it is not possible to reach **(1, 0)**. Therefore, print **“No”**. Otherwise, if **(1, 0)** is reached, print** “Yes”**.

**Time Complexity:** O(2^{log (min(X, Y))})**Auxiliary Space:** O(1)

**Efficient Approach:** The idea is to observe the following properties:

- Try to solve the problem in reverse order i.e., it is possible to move from
**(X, Y)**to**(1, 0)**by reclusively moving to points**(X – Y, Y)**or**(X, Y – X)**. - The above property can be represented as follows:

GCD(X, Y) = GCD(X, Y – X) or GCD(X – Y, Y)

where,

Base Case isGCD(X, 0) = X

Now, notice that gcd of 1 and 0 i.e., gcd(1, 0) is 1.

Therefore, gcd of X and Y must also be 1 to reach (1, 0).

Therefore, from the above observations, the path from** (1, 0)** to **(X, Y)** always exists if **GCD(X, Y) = 1**. Print “Yes” if the GCD of the given two numbers is **1**. Otherwise, print **“No”**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <iostream>` `using` `namespace` `std;` `// Function to find the GCD of two` `// numbers a and b` `int` `GCD(` `int` `a, ` `int` `b)` `{` ` ` `// Base Case` ` ` `if` `(b == 0)` ` ` `return` `a;` ` ` `// Recursively find the GCD` ` ` `else` ` ` `return` `GCD(b, a % b);` `}` `// Function to check if (x, y) can be` `// reached from (1, 0) from given moves` `void` `check(` `int` `x, ` `int` `y)` `{` ` ` `// If GCD is 1, then print "Yes"` ` ` `if` `(GCD(x, y) == 1) {` ` ` `cout << ` `"Yes"` `;` ` ` `}` ` ` `else` `{` ` ` `cout << ` `"No"` `;` ` ` `}` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given X and Y` ` ` `int` `X = 2, Y = 7;` ` ` `// Function call` ` ` `check(X, Y);` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Java

`// Java program for the ` `// above approach` `import` `java.util.*;` `class` `GFG{` `// Function to find the ` `// GCD of two numbers a ` `// and b` `static` `int` `GCD(` `int` `a, ` ` ` `int` `b)` `{` ` ` `// Base Case` ` ` `if` `(b == ` `0` `)` ` ` `return` `a;` ` ` `// Recursively find ` ` ` `// the GCD` ` ` `else` ` ` `return` `GCD(b, a % b);` `}` `// Function to check if ` `// (x, y) can be reached ` `// from (1, 0) from given ` `// moves` `static` `void` `check(` `int` `x, ` ` ` `int` `y)` `{` ` ` `// If GCD is 1, then ` ` ` `// print "Yes"` ` ` `if` `(GCD(x, y) == ` `1` `) ` ` ` `{` ` ` `System.out.print(` `"Yes"` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `System.out.print(` `"No"` `);` ` ` `}` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `// Given X and Y` ` ` `int` `X = ` `2` `, Y = ` `7` `;` ` ` `// Function call` ` ` `check(X, Y);` `}` `}` `// This code is contributed by shikhasingrajput` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program for the above approach` `# Function to find the GCD of two` `# numbers a and b` `def` `GCD(a, b):` ` ` ` ` `# Base Case` ` ` `if` `(b ` `=` `=` `0` `):` ` ` `return` `a` ` ` ` ` `# Recursively find the GCD` ` ` `else` `:` ` ` `return` `GCD(b, a ` `%` `b)` `# Function to check if (x, y) can be` `# reached from (1, 0) from given moves` `def` `check(x, y):` ` ` ` ` `# If GCD is 1, then pr"Yes"` ` ` `if` `(GCD(x, y) ` `=` `=` `1` `):` ` ` `print` `(` `"Yes"` `)` ` ` `else` `:` ` ` `print` `(` `"No"` `)` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `# Given X and Y` ` ` `X ` `=` `2` ` ` `Y ` `=` `7` ` ` `# Function call` ` ` `check(X, Y)` `# This code is contributed by mohit kumar 29` |

*chevron_right*

*filter_none*

## C#

`// C# program for the ` `// above approach` `using` `System;` `class` `GFG{` ` ` `// Function to find the ` `// GCD of two numbers a ` `// and b` `static` `int` `GCD(` `int` `a, ` `int` `b)` `{` ` ` ` ` `// Base Case` ` ` `if` `(b == 0)` ` ` `return` `a;` ` ` `// Recursively find ` ` ` `// the GCD` ` ` `else` ` ` `return` `GCD(b, a % b);` `}` `// Function to check if ` `// (x, y) can be reached ` `// from (1, 0) from given ` `// moves` `static` `void` `check(` `int` `x, ` `int` `y)` `{` ` ` ` ` `// If GCD is 1, then ` ` ` `// print "Yes"` ` ` `if` `(GCD(x, y) == 1) ` ` ` `{` ` ` `Console.WriteLine(` `"Yes"` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `Console.WriteLine(` `"No"` `);` ` ` `}` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` ` ` `// Given X and Y` ` ` `int` `X = 2, Y = 7;` ` ` `// Function call` ` ` `check(X, Y);` `}` `}` `// This code is contributed by SURENDRA_GANGWAR` |

*chevron_right*

*filter_none*

**Output:**

Yes

**Time Complexity:** O(log(min(X, Y))**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.