Skip to content
Related Articles

Related Articles

Improve Article

Check if it is possible to reach vector B by rotating vector A and adding vector C to it

  • Last Updated : 13 Jul, 2021

Given three 2-Dimensional vector co-ordinates A, B and C. The task is to perform below operations any number of times on vector A to get vector B
 

  • Rotate the vector 90 degrees clockwise.
  • Add vector C to it.

Print “YES” B is obtained using the above operations, else Print “NO”.
Examples: 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: Vector A: 2 3, Vector B: 2 3, Vector C: 0 0
Output: YES
The given vector A has coordinate (2, 3) and we need to 
convert this vector A to vector B which is also (2, 3). 
By rotating vector A 4 times by 90 degrees and adding
it to vector C(0, 0) will give us vector B(2, 3).

Input: Vector A: 0 0, Vector B: 1 1, Vector C: 2 2
Output: NO

 



 

Below is the step by step algorithm to solve this problem:
 

  • Initialize three vectors of 2-D coordinates as A ( a, b ), B ( x, y ) and C ( p, q ).
  • Coordinates of vector A can be of any quadrant. So, initialize a check function for all the quadrant and check if any of it is true.
  • Find a-x and b-y, which will tell us how much we need to make it to vector B.
  • Initialize d = p*p + q*q. If d = 0 then you need not to add anything in vector A.
  • If D > 0, then check if a*p + b*q and b*p – a*q is in the multiple of ‘d’ so that it is possible to get the vector B.

Below is the implementation of above algorithm: 
 

C++




// C++ program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times
 
#include <bits/stdc++.h>
using namespace std;
#define ll long long
 
// function to check if vector B is
// possible from vector A
ll check(ll a, ll b, ll p, ll q)
{
    ll d = p * p + q * q;
 
    // if d = 0, then you need to add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 && (b * p - a * q) % d == 0;
}
 
bool check(int a, int b, int x, int y, int p, int q)
{
    // for all four quadrants
    if (check(a - x, b - y, p, q)
        || check(a + x, b + y, p, q)
        || check(a - y, b + x, p, q)
        || check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
    // initialize all three
    // vector coordinates
 
    int a = -4, b = -2;
    int x = 0, y = 0;
    int p = -2, q = -1;
 
    if (check(a, b, x, y, p, q))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
   
public class GFG {
 
    // function to check if vector B is
    // possible from vector A
    static boolean check(long a, long b, long p, long q)
    {
        long d = p * p + q * q;
       
        // if d = 0, then you need to add nothing to vector A
        if (d == 0)
            return a == 0 && b == 0;
        else
            return (a * p + b * q) % d == 0 && (b * p - a * q) % d == 0;
    }
       
    static boolean check(int a, int b, int x, int y, int p, int q)
    {
        // for all four quadrants
        if (check(a - x, b - y, p, q)
            || check(a + x, b + y, p, q)
            || check(a - y, b + x, p, q)
            || check(a + y, b - x, p, q))
            return true;
        else
            return false;
    }
       
 
    // Driver code
    public static void main(String args[])
    {
        // initialize all three
        // vector coordinates
       
        int a = -4, b = -2;
        int x = 0, y = 0;
        int p = -2, q = -1;
       
        if (check(a, b, x, y, p, q))
            System.out.println("Yes");
        else
            System.out.println("No");
     
    }
    // This Code is contributed by ANKITRAI1
}

Python3




# Python3 program to Check if it
# is possible to reach vector B
# by Rotating vector A and adding
# vector C to it any number of times
 
# function to check if vector B
# is possible from vector A
def check(a, b, p, q):
 
    d = p * p + q * q;
 
    # if d = 0, then you need to
    # add nothing to vector A
    if (d == 0):
        return a == 0 and b == 0;
    else :
        return ((a * p + b * q) % d == 0 and
                (b * p - a * q) % d == 0);
 
def checks(a, b, x, y, p, q):
 
    # for all four quadrants
    if (check(a - x, b - y, p, q) or
        check(a + x, b + y, p, q) or
        check(a - y, b + x, p, q) or
        check(a + y, b - x, p, q)):
        return True;
    else:
        return False;
 
# Driver code
 
# initialize all three
# vector coordinates
a = -4;
b = -2;
x = 0;
y = 0;
p = -2;
q = -1;
 
if (checks(a, b, x, y, p, q)):
    print( "Yes");
else:
    print ("No");
 
# This code is contributed
# by Shivi_Aggarwal

C#




// C# program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
using System;
class GFG
{
 
// function to check if vector B is
// possible from vector A
static bool check(long a, long b,
                  long p, long q)
{
    long d = p * p + q * q;
     
    // if d = 0, then you need to
    // add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 &&
               (b * p - a * q) % d == 0;
}
     
static bool check(int a, int b, int x,
                  int y, int p, int q)
{
    // for all four quadrants
    if (check(a - x, b - y, p, q) ||
        check(a + x, b + y, p, q) ||
        check(a - y, b + x, p, q) ||
        check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
     
// Driver code
public static void Main()
{
    // initialize all three
    // vector coordinates
    int a = -4, b = -2;
    int x = 0, y = 0;
    int p = -2, q = -1;
     
    if (check(a, b, x, y, p, q))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed
// by ChitraNayal

PHP




<?php
// PHP program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times
 
 
// function to check if vector B is
// possible from vector A
function check($a, $b, $p, $q)
{
    $d = $p * $p + $q * $q;
 
    // if d = 0, then you need to add nothing to vector A
    if ($d == 0)
        return ( $a == 0 && $b == 0);
    else
        return (($a * $p + $b * $q) % $d == 0 &&
                ($b * $p - $a * $q) % $d == 0);
}
 
function check1($a, $b, $x, $y, $p, $q)
{
    // for all four quadrants
        if (check($a - $x, $b - $y, $p, $q)
        || check($a + $x, $b + $y, $p, $q)
        || check($a - $y, $b + $x, $p, $q)
        || check($a + $y, $b - $x, $p, $q))
        return true;
    else
        return false;
}
 
// Driver code
 
    // initialize all three
    // vector coordinates
 
    $a = -4;
    $b = -2;
    $x = 0;
    $y = 0;
    $p = -2;
    $q = -1;
 
    if (check1($a, $b, $x, $y, $p, $q))
        echo "Yes";
    else
        echo "No";
 
// This Code is contributed by mits
?>

Javascript




<script>
 
// Javascript program to Check if it is
// possible to reach vector B by
// Rotating vector A and adding
// vector C to it any number of times.
 
// Function to check if vector B is
// possible from vector A
function _check(a, b, p, q)
{
    var d = p * p + q * q;
   
    // If d = 0, then you need
    // to add nothing to vector A
    if (d == 0)
        return a == 0 && b == 0;
    else
        return (a * p + b * q) % d == 0 &&
               (b * p - a * q) % d == 0;
}
   
function check(a, b, x, y, p, q)
{
 
 
        // for all four qua
    // for all four quadrants
    if (_check(a - x, b - y, p, q)
        || _check(a + x, b + y, p, q)
        || _check(a - y, b + x, p, q)
        || _check(a + y, b - x, p, q))
        return true;
    else
        return false;
}
       
// Driver code
 
// Initialize all three
// vector coordinates
var a = -4, b = -2;
var x = 0, y = 0;
var p = -2, q = -1;
 
if (check(a, b, x, y, p, q))
    document.write("Yes");
else
    document.write("No");
            
// This code is contributed by Kirti
 
</script>
Output: 
Yes

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :