Check if it is possible to move from (0, 0) to (x, y) in N steps

Given a point (x, y). Find whether it is possible or not to move from (0, 0) to (x, y) in exactly n steps. 4 types of steps are valid, you can move from a point (a, b) to either of (a, b+1), (a, b-1), (a-1, b), (a+1, b)

Examples:

Input: x = 0, y = 0, n = 2
Output: POSSIBLE

Input: x = 1, y = 1, n = 3 
Output: IMPOSSIBLE

Approach :

In the shortest path, one can move from (0, 0) to (x, y) in |x| + |y|. So, it is not possible to move from (0, 0) to (x, y) in less than |x| + |y| steps. After reaching one can take two more steps as (x, y) -> (x, y+1) -> (x, y).

So, it is possible if



n >= |x| + |y| and ( n-( |x| + |y| ) ) % 2 = 0.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check whether it is possible
// or not to move from (0, 0) to (x, y)
// in exactly n steps
#include <bits/stdc++.h>
using namespace std;
  
// Function to check whether it is possible
// or not to move from (0, 0) to (x, y)
// in exactly n steps
bool Arrive(int a, int b, int n)
{
    if (n >= abs(a) + abs(b) and (n - (abs(a) + abs(b))) % 2 == 0)
        return true;
  
    return false;
}
  
// Driver code
int main()
{
    int a = 5, b = 5, n = 11;
  
    if (Arrive(a, b, n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check whether it is possible
// or not to move from (0, 0) to (x, y)
// in exactly n steps
import java.io.*;
  
public class GFG {
  
// Function to check whether it is possible
// or not to move from (0, 0) to (x, y)
// in exactly n steps
static boolean Arrive(int a, int b, int n)
{
    if (n >= Math.abs(a) + Math.abs(b) && (n - (Math.abs(a) + Math.abs(b))) % 2 == 0)
        return true;
  
    return false;
}
  
// Driver code
int main()
{
  
    return 0;
}
  
    public static void main (String[] args) {
          
    int a = 5, b = 5, n = 11;
  
    if (Arrive(a, b, n))
        System.out.println( "Yes");
    else
        System.out.println( "No");
    }
}
//This code is contributed by shs..
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check whether 
# it is possible or not to move from 
# (0, 0) to (x, y) in exactly n steps 
  
# Function to check whether it is 
# possible or not to move from 
# (0, 0) to (x, y) in exactly n steps 
def Arrive(a, b, n):
      
    if (n >= abs(a) + abs(b) and 
       (n - (abs(a) + abs(b))) % 2 == 0):
        return True
  
    return False
  
# Driver code 
a = 5
b = 5
n = 11
  
if (Arrive(a, b, n)): 
    print("Yes"
else:
    print("No"
  
# This code is contributed
# by Yatin Gupta     
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check whether 
// it is possible or not to 
// move from (0, 0) to (x, y)
// in exactly n steps
using System;
  
class GFG 
{
  
// Function to check whether it 
// is possible or not to move 
// from (0, 0) to (x, y) in
// exactly n steps
static bool Arrive(int a, int b, int n)
{
    if (n >= Math.Abs(a) + Math.Abs(b) && 
       (n - (Math.Abs(a) + Math.Abs(b))) % 2 == 0)
        return true;
  
    return false;
}
  
// Driver code
public static void Main () 
{
    int a = 5, b = 5, n = 11;
  
    if (Arrive(a, b, n))
        Console.WriteLine( "Yes");
    else
        Console.WriteLine( "No");
    }
}
  
// This code is contributed by shashank
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check whether 
// it is possible or not to move 
// from (0, 0) to (x, y) in exactly n steps
  
// Function to check whether it 
// is possible or not to move 
// from (0, 0) to (x, y) in exactly n steps
function Arrive($a, $b, $n)
{
    if ($n >= abs($a) + abs($b) and
       ($n - (abs($a) + abs($b))) % 2 == 0)
        return true;
  
    return false;
}
  
// Driver code
$a = 5; $b = 5; $n = 11;
  
if (Arrive($a, $b, $n))
    echo "Yes";
else
    echo "No";
  
// This code is contributed 
// by Akanksha Rai(Abby_akku)
chevron_right

Output:
No





pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :