# Check if it is possible to move from (0, 0) to (X, Y) in exactly K steps

• Last Updated : 19 Mar, 2021

Given a point (X, Y) in a 2-D plane and an integer K, the task is to check whether it is possible to move from (0, 0) to the given point (X, Y) in exactly K moves. In a single move, the positions that are reachable from (X, Y) are (X, Y + 1), (X, Y – 1), (X + 1, Y) and (X – 1, Y).
Examples:

Input: X = 0, Y = 0, K = 2
Output: Yes
Move 1: (0, 0) -> (0, 1)
Move 2: (0, 1) -> (0, 0)
Input: X = 5, Y = 8, K = 20
Output: No

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Approach: It is clear that the shortest path to reach (X, Y) from (0, 0) will be minMoves = (|X| + |Y|). So, if K < minMoves then it is impossible to reach (X, Y) but if K â‰¥ minMoves then after reaching (X, Y) in minMoves number of moves the remaining (K – minMoves) number of moves have to be even in order to remain at that point for the rest of the moves.
So it is possible to reach (X, Y) from (0, 0) only if K â‰¥ (|X| + |Y|) and (K – (|X| + |Y|)) % 2 = 0.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true if it is``// possible to move from (0, 0) to``// (x, y) in exactly k moves``bool` `isPossible(``int` `x, ``int` `y, ``int` `k)``{``    ``// Minimum moves required``    ``int` `minMoves = ``abs``(x) + ``abs``(y);` `    ``// If possible``    ``if` `(k >= minMoves && (k - minMoves) % 2 == 0)``        ``return` `true``;` `    ``return` `false``;``}` `// Driver code``int` `main()``{``    ``int` `x = 5, y = 8, k = 20;` `    ``if` `(isPossible(x, y, k))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `    ``// Function that returns true if it is``    ``// possible to move from (0, 0) to``    ``// (x, y) in exactly k moves``    ``static` `boolean` `isPossible(``int` `x, ``int` `y, ``int` `k)``    ``{``        ``// Minimum moves required``        ``int` `minMoves = Math.abs(x) + Math.abs(y);``    ` `        ``// If possible``        ``if` `(k >= minMoves && (k - minMoves) % ``2` `== ``0``)``            ``return` `true``;``    ` `        ``return` `false``;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `x = ``5``, y = ``8``, k = ``20``;``    ` `        ``if` `(isPossible(x, y, k))``            ``System.out.println(``"Yes"``);``        ``else``            ``System.out.println(``"No"``);``    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 implementation of the approach` `# Function that returns true if it is``# possible to move from (0, 0) to``# (x, y) in exactly k moves``def` `isPossible(x, y, k):``    ` `    ``# Minimum moves required``    ``minMoves ``=` `abs``(x) ``+` `abs``(y)` `    ``# If possible``    ``if` `(k >``=` `minMoves ``and` `(k ``-` `minMoves) ``%` `2` `=``=` `0``):``        ``return` `True` `    ``return` `False` `# Driver code``x ``=` `5``y ``=` `8``k ``=` `20` `if` `(isPossible(x, y, k)):``    ``print``(``"Yes"``)``else``:``    ``print``(``"No"``)` `# This code is contributed by Mohit Kumar`

## C#

 `// C# implementation of the approach``using` `System;``class` `GFG``{``    ` `    ``// Function that returns true if it is``    ``// possible to move from (0, 0) to``    ``// (x, y) in exactly k moves``    ``static` `bool` `isPossible(``int` `x, ``int` `y, ``int` `k)``    ``{``        ``// Minimum moves required``        ``int` `minMoves = Math.Abs(x) + Math.Abs(y);``    ` `        ``// If possible``        ``if` `(k >= minMoves && (k - minMoves) % 2 == 0)``            ``return` `true``;``    ` `        ``return` `false``;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main ()``    ``{``        ``int` `x = 5, y = 8, k = 20;``    ` `        ``if` `(isPossible(x, y, k))``            ``Console.Write(``"Yes"``);``        ``else``            ``Console.Write(``"No"``);``    ``}``}` `// This code is contributed by Nidhi`

## Javascript

 ``
Output:
`No`

My Personal Notes arrow_drop_up