Check if given path between two nodes of a graph represents a shortest paths
Given an unweighted directed graph and Q queries consisting of sequences of traversal between two nodes of the graph, the task is to find out if the sequences represent one of the shortest paths between the two nodes.
Examples:
Input: 1 2 3 4 Output: NO
Explanation: The first and last node of the input sequence is 1 and 4 respectively. The shortest path between 1 and 4 is 1 -> 3 -> 4 hence, the output is NO for the 1st example. Input: 1 3 4 Output: YES
Approach:
The idea is to use Floyd Warshall Algorithm to store the length of all pairs of vertices. If the length of the shortest path between the starting and ending node of the sequence is one less than the length of the sequence, then the given sequence represents one of the shortest paths between the nodes.
Below is the implementation of above approach:
C++
// C++ program for // the above approach #include <bits/stdc++.h> using namespace std; #define INFINITE 10000 // Function to store the // length of shortest path // between all pairs of nodes void shortestPathLength( int n, int graph[4][4], int dis[4][4]) { // Initializing dis matrix // with current distance value for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { dis[i][j] = graph[i][j]; } } // Floyd-Warshall Algorithm for ( int k = 0; k < n; k++) { for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]); } } } } // A function that prints YES if the // given path is the shortest path // and prints NO if the given path // is not shortest void checkShortestPath( int length, int path[], int dis[4][4]) { // Check if the given path // is shortest or not // as discussed in above approach if (dis[path[0] - 1][path[length - 1] - 1] == length - 1) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver code int main() { // Adjacency matrix representing the graph const int n = 4; int graph[n][n] = { { 0, 1, 1, INFINITE }, { INFINITE, 0, 1, INFINITE }, { INFINITE, INFINITE, 0, 1 }, { 1, INFINITE, INFINITE, 0 } }; // A matrix to store the length of shortest int dis[n][n]; // path between all pairs of vertices shortestPathLength(n, graph, dis); int path1[] = { 1, 2, 3, 4 }; checkShortestPath(n, path1, dis); int path2[] = { 1, 3, 4 }; checkShortestPath(3, path2, dis); return 0; } |
Java
// Java program for the above approach class GFG { static int INFINITE = 10000 ; // Function to store the // length of shortest path // between all pairs of nodes static void shortestPathLength( int n, int graph[][], int dis[][]) { // Initializing dis matrix // with current distance value for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < n; j++) { dis[i][j] = graph[i][j]; } } // Floyd-Warshall Algorithm for ( int k = 0 ; k < n; k++) { for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < n; j++) { dis[i][j] = Math.min(dis[i][j], dis[i][k] + dis[k][j]); } } } } // A function that prints YES if the // given path is the shortest path // and prints NO if the given path // is not shortest static void checkShortestPath( int length, int path[], int dis[][]) { // Check if the given path // is shortest or not // as discussed in above approach if (dis[path[ 0 ] - 1 ][path[length - 1 ] - 1 ] == length - 1 ) { System.out.println( "YES" ); } else { System.out.println( "NO" ); } } // Driver code public static void main(String[] args) { // Adjacency matrix representing the graph int n = 4 ; int graph[][] = { { 0 , 1 , 1 , INFINITE }, { INFINITE, 0 , 1 , INFINITE }, { INFINITE, INFINITE, 0 , 1 }, { 1 , INFINITE, INFINITE, 0 } }; // A matrix to store the length of shortest int [][]dis = new int [n][n]; // path between all pairs of vertices shortestPathLength(n, graph, dis); int path1[] = { 1 , 2 , 3 , 4 }; checkShortestPath(n, path1, dis); int path2[] = { 1 , 3 , 4 }; checkShortestPath( 3 , path2, dis); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program for the above approach INFINITE = 10000 # Function to store the # length of shortest path # between all pairs of nodes def shortestPathLength(n, graph, dis): # Initializing dis matrix # with current distance value for i in range (n): for j in range (n): dis[i][j] = graph[i][j] # Floyd-Warshall Algorithm for k in range (n): for i in range (n): for j in range (n): dis[i][j] = min (dis[i][j], dis[i][k] + dis[k][j]) # A function that prints YES if the # given path is the shortest path # and prints NO if the given path # is not shortest def checkShortestPath(length, path, dis): # Check if the given path # is shortest or not # as discussed in above approach if (dis[path[ 0 ] - 1 ][path[length - 1 ] - 1 ] = = length - 1 ): print ( "YES" ) else : print ( "NO" ) # Driver code # Adjacency matrix representing the graph n = 4 graph = [[ 0 , 1 , 1 , INFINITE], [INFINITE, 0 , 1 , INFINITE], [INFINITE, INFINITE, 0 , 1 ], [ 1 , INFINITE, INFINITE, 0 ]] # A matrix to store the length of shortest dis = [[ 0 for i in range (n)] for i in range (n)] # path between all pairs of vertices shortestPathLength(n, graph, dis) path1 = [ 1 , 2 , 3 , 4 ] checkShortestPath(n, path1, dis) path2 = [ 1 , 3 , 4 ] checkShortestPath( 3 , path2, dis) # This code is contributed Mohit Kumar |
C#
// C# program for the above approach using System; class GFG { static int INFINITE = 10000; // Function to store the //.Length of shortest path // between all pairs of nodes static void shortestPathLength( int n, int [,]graph, int [,]dis) { // Initializing dis matrix // with current distance value for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { dis[i, j] = graph[i, j]; } } // Floyd-Warshall Algorithm for ( int k = 0; k < n; k++) { for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { dis[i, j] = Math.Min(dis[i, j], dis[i, k] + dis[k, j]); } } } } // A function that prints YES if the // given path is the shortest path // and prints NO if the given path // is not shortest static void checkShortestPath( int length, int []path, int [,]dis) { // Check if the given path // is shortest or not // as discussed in above approach if (dis[path[0] - 1, path[length - 1] - 1] == length - 1) { Console.WriteLine( "YES" ); } else { Console.WriteLine( "NO" ); } } // Driver code public static void Main(String[] args) { // Adjacency matrix representing the graph int n = 4; int [,]graph = { { 0, 1, 1, INFINITE }, { INFINITE, 0, 1, INFINITE }, { INFINITE, INFINITE, 0, 1 }, { 1, INFINITE, INFINITE, 0 } }; // A matrix to store the.Length of shortest int [,]dis = new int [n, n]; // path between all pairs of vertices shortestPathLength(n, graph, dis); int []path1 = { 1, 2, 3, 4 }; checkShortestPath(n, path1, dis); int []path2 = { 1, 3, 4 }; checkShortestPath(3, path2, dis); } } // This code is contributed by 29AjayKumar |
Javascript
<script> let INFINITE = 10000; // Function to store the // length of shortest path // between all pairs of nodes function shortestPathLength(n,graph,dis) { // Initializing dis matrix // with current distance value for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { dis[i][j] = graph[i][j]; } } // Floyd-Warshall Algorithm for (let k = 0; k < n; k++) { for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { dis[i][j] = Math.min(dis[i][j], dis[i][k] + dis[k][j]); } } } } function checkShortestPath( length,path,dis) { // Check if the given path // is shortest or not // as discussed in above approach if (dis[path[0] - 1][path[length - 1] - 1] == length - 1) { document.write( "YES<br>" ); } else { document.write( "NO<br>" ); } } let n = 4; let graph= [[ 0, 1, 1, INFINITE ], [ INFINITE, 0, 1, INFINITE ], [ INFINITE, INFINITE, 0, 1 ], [ 1, INFINITE, INFINITE, 0 ] ]; let dis = new Array(n); for (let i=0;i<n;i++) { dis[i]= new Array(n); for (let j=0;j<n;j++) { dis[i][j]=0; } } // path between all pairs of vertices shortestPathLength(n, graph, dis); let path1 = [ 1, 2, 3, 4 ]; checkShortestPath(n, path1, dis); let path2 = [ 1, 3, 4 ]; checkShortestPath(3, path2, dis); // This code is contributed by patel2127 </script> |
Output:
NO YES
Time complexity: O(V^3)
Please Login to comment...