# Check if each element of an Array is the Sum of any two elements of another Array

Given two arrays A[] and B[] consisting of N integers, the task is to check if each element of array B[] can be formed by adding any two elements of array A[]. If it is possible, then print “Yes”. Otherwise, print “No”.

Examples:

Input: A[] = {3, 5, 1, 4, 2}, B[] = {3, 4, 5, 6, 7}
Output: Yes
Explanation:
B = 3 = (1 + 2) = A + A,
B = 4 = (1 + 3) = A + A,
B = 5 = (3 + 2) = A + A,
B = 6 = (2 + 4) = A + A,
B = 7 = (3 + 4) = A + A
Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 2, 3, 4, 5}
Output: No

Approach:
Follow the steps below to solve the problem:

• Store each element of B[] in a Set.
• For each pair of indices (i, j) of the array A[], check if A[i] + A[j] is present in the set. If found to be true, remove A[i] + A[j] from the set.
• If the set becomes empty, then print “Yes”. Otherwise, print “No”.

Below is the implementation of the above approach:

 `// C++ program to implement ` `// the above approach ` `#include  ` `using` `namespace` `std; `   `// Function to check if each element ` `// of B[] can be formed by adding two ` `// elements of array A[] ` `string checkPossible(``int` `A[], ``int` `B[], ``int` `n) ` `{ ` `    ``// Store each element of B[] ` `    ``unordered_set values; `   `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``values.insert(B[i]); ` `    ``} `   `    ``// Traverse all possible pairs of array ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = 0; j < n; j++) { `   `            ``// If A[i] + A[j] is present in ` `            ``// the set ` `            ``if` `(values.find(A[i] + A[j]) ` `                ``!= values.end()) { `   `                ``// Remove A[i] + A[j] from the set ` `                ``values.erase(A[i] + A[j]); `   `                ``if` `(values.empty()) ` `                    ``break``; ` `            ``} ` `        ``} ` `    ``} `   `    ``// If set is empty ` `    ``if` `(values.size() == 0) ` `        ``return` `"Yes"``; `   `    ``// Otherwise ` `    ``else` `        ``return` `"No"``; ` `} `   `// Driver Code ` `int` `main() ` `{ ` `    ``int` `N = 5; `   `    ``int` `A[] = { 3, 5, 1, 4, 2 }; ` `    ``int` `B[] = { 3, 4, 5, 6, 7 }; `   `    ``cout << checkPossible(A, B, N); ` `} `

 `// Java program to implement ` `// the above approach ` `import` `java.io.*;` `import` `java.util.*; `   `class` `GFG{` `    `  `// Function to check if each element ` `// of B[] can be formed by adding two ` `// elements of array A[] ` `static` `String checkPossible(``int` `A[], ``int` `B[],` `                            ``int` `n) ` `{ ` `    `  `    ``// Store each element of B[] ` `    ``Set values = ``new` `HashSet(); `   `    ``for``(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``values.add(B[i]); ` `    ``} `   `    ``// Traverse all possible pairs of array ` `    ``for``(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``for``(``int` `j = ``0``; j < n; j++) ` `        ``{ `   `            ``// If A[i] + A[j] is present in ` `            ``// the set ` `            ``if` `(values.contains(A[i] + A[j]))` `            ``{ ` `                `  `                ``// Remove A[i] + A[j] from the set ` `                ``values.remove(A[i] + A[j]); `   `                ``if` `(values.size() == ``0``) ` `                    ``break``; ` `            ``} ` `        ``} ` `    ``} `   `    ``// If set is empty ` `    ``if` `(values.size() == ``0``) ` `        ``return` `"Yes"``; `   `    ``// Otherwise ` `    ``else` `        ``return` `"No"``; ` `} `   `// Driver Code ` `public` `static` `void` `main(String args[])` `{ ` `    ``int` `N = ``5``; ` `    ``int` `A[] = { ``3``, ``5``, ``1``, ``4``, ``2` `}; ` `    ``int` `B[] = { ``3``, ``4``, ``5``, ``6``, ``7` `}; ` `    `  `    ``System.out.print(checkPossible(A, B, N)); ` `} ` `} `   `// This code is contributed by offbeat`

 `# Python3 program to implement ` `# the above approach `   `# Function to check if each element ` `# of B[] can be formed by adding two ` `# elements of array A[] ` `def` `checkPossible(A, B, n):`   `    ``# Store each element of B[] ` `    ``values ``=` `set``([])`   `    ``for` `i ``in` `range` `(n):` `        ``values.add(B[i])` `    `  `    ``# Traverse all possible ` `    ``# pairs of array ` `    ``for` `i ``in` `range` `(n):` `        ``for` `j ``in` `range` `(n):`   `            ``# If A[i] + A[j] is present in ` `            ``# the set ` `            ``if` `((A[i] ``+` `A[j]) ``in` `values):`   `                ``# Remove A[i] + A[j] from the set ` `                ``values.remove(A[i] ``+` `A[j])`   `                ``if` `(``len``(values) ``=``=` `0``):` `                    ``break`   `    ``# If set is empty ` `    ``if` `(``len``(values) ``=``=` `0``):` `        ``return` `"Yes"`   `    ``# Otherwise ` `    ``else``:` `        ``return` `"No"`   `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``:` `  `  `  ``N ``=` `5`   `  ``A ``=` `[``3``, ``5``, ``1``, ``4``, ``2``]` `  ``B ``=` `[``3``, ``4``, ``5``, ``6``, ``7``]`   `  ``print` `(checkPossible(A, B, N))`   `# This code is contributed by Chitranayal`

 `// C# program to implement ` `// the above approach ` `using` `System;` `using` `System.Collections.Generic;` `class` `GFG{` `    `  `// Function to check if each element ` `// of []B can be formed by adding two ` `// elements of array []A ` `static` `String checkPossible(``int` `[]A, ``int` `[]B,` `                            ``int` `n) ` `{ `   `  ``// Store each element of []B ` `  ``HashSet values = ``new` `HashSet(); `   `  ``for``(``int` `i = 0; i < n; i++) ` `  ``{ ` `    ``values.Add(B[i]); ` `  ``} `   `  ``// Traverse all possible pairs of array ` `  ``for``(``int` `i = 0; i < n; i++) ` `  ``{ ` `    ``for``(``int` `j = 0; j < n; j++) ` `    ``{ ` `      ``// If A[i] + A[j] is present in ` `      ``// the set ` `      ``if` `(values.Contains(A[i] + A[j]))` `      ``{                 ` `        ``// Remove A[i] + A[j] from the set ` `        ``values.Remove(A[i] + A[j]); `   `        ``if` `(values.Count == 0) ` `          ``break``; ` `      ``} ` `    ``} ` `  ``} `   `  ``// If set is empty ` `  ``if` `(values.Count == 0) ` `    ``return` `"Yes"``; `   `  ``// Otherwise ` `  ``else` `    ``return` `"No"``; ` `} `   `// Driver Code ` `public` `static` `void` `Main(String []args)` `{ ` `  ``int` `N = 5; ` `  ``int` `[]A = {3, 5, 1, 4, 2}; ` `  ``int` `[]B = {3, 4, 5, 6, 7}; `   `  ``Console.Write(checkPossible(A, B, N)); ` `} ` `} `   `// This code is contributed by Amit Katiyar `

Output:
```Yes

```

Time Complexity: O(N2
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :