# Check if Decimal representation of an Octal number is divisible by 7

Given an Octal number N. The task is to write a program to check if the Decimal representation of the given octal number N is divisible by 7 or not.

Examples:

```Input: N = 112
Output: NO
Equivalent Decimal = 74
7410 = 7 * 10 1 + 4 * 100
1128 = 1 * 82 + 1 * 81 + 2 * 80

Input: N = 25
Output: YES
Decimal Equivalent = 21
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to note that, 8 % 7 will return 1. Thus, when we expand octal representation and take its modulo 7 all powers of 8 in individual terms will reduce to 1. So, if the sum of all the digits in octal representation is divisible by 7 then, the corresponding decimal number will be divisible by 7.

Below is the implementation of the above approach:

## C++

 `// CPP program to check if Decimal representation ` `// of an Octal number is divisible by 7 or not ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to check Divisibility ` `int` `check(``int` `n) ` `{ ` `    ``int` `sum = 0; ` ` `  `    ``// Sum of all individual digits ` `    ``while` `(n != 0) { ` `        ``sum += n % 10; ` `        ``n = n / 10; ` `    ``} ` ` `  `    ``// Condition ` `    ``if` `(sum % 7 == 0) ` `        ``return` `1; ` `    ``else` `        ``return` `0; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// Octal number ` `    ``int` `n = 25; ` ` `  `    ``(check(n) == 1) ? cout << ``"YES"` `                    ``: cout << ``"NO"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to check if Decimal  ` `// representation of an Octal number  ` `// is divisible by 7 or not ` `import` `java.util.*; ` `import` `java.lang.*; ` `import` `java.io.*; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to check Divisibility ` `static` `int` `check(``int` `n) ` `{ ` `    ``int` `sum = ``0``; ` ` `  `    ``// Sum of all individual digits ` `    ``while` `(n != ``0``)  ` `    ``{ ` `        ``sum += n % ``10``; ` `        ``n = n / ``10``; ` `    ``} ` ` `  `    ``// Condition ` `    ``if` `(sum % ``7` `== ``0``) ` `        ``return` `1``; ` `    ``else` `        ``return` `0``; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``// Octal number ` `    ``int` `n = ``25``; ` ` `  `    ``String s=(check(n) == ``1``) ?  ` `                       ``"YES"` `: ``"NO"``; ` `    ``System.out.println(s); ` `} ` `} ` ` `  `// This code is contributed ` `// by Subhadeep `

## Python 3

 `# Python 3 program to check if  ` `# Decimal representation of an ` `# Octal number is divisible by  ` `# 7 or not ` ` `  `# Function to check Divisibility ` `def` `check(n): ` ` `  `    ``sum` `=` `0` ` `  `    ``# Sum of all individual digits ` `    ``while` `n !``=` `0` `: ` `        ``sum` `+``=` `n ``%` `10` `        ``n ``=` `n ``/``/` `10` ` `  `    ``# Condition ` `    ``if` `sum` `%` `7` `=``=` `0` `: ` `        ``return` `1` `    ``else``: ` `        ``return` `0` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``# Octal number ` `    ``n ``=` `25` ` `  `    ``print``((``"YES"``) ``if` `check(n) ``=``=` `1`  `                  ``else` `print``(``"NO"``)) ` ` `  `# This code is contributed ` `# by ChitraNayal `

## C#

 `// C# program to check if Decimal ` `// representation of an Octal  ` `// number is divisible by 7 or not ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Function to check Divisibility ` `    ``static` `int` `check(``int` `n) ` `    ``{ ` `            ``int` `sum = 0; ` `     `  `        ``// Sum of all individual digits ` `        ``while` `(n != 0) ` `        ``{ ` `            ``sum += n % 10; ` `            ``n = n / 10; ` `        ``} ` `     `  `    ``// Condition ` `    ``if` `(sum % 7 == 0) ` `        ``return` `1; ` `    ``else` `        ``return` `0; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String []args) ` `{ ` `    ``// Octal number ` `    ``int` `n = 25; ` `     `  `    ``String s=(check(n) == 1) ?  ` `                       ``"YES"` `: ``"NO"``; ` `    ``Console.WriteLine(s); ` `} ` `} ` ` `  `// This code is contributed  ` `// by Kirti_Mangal `

## PHP

 ` `

Output:

```YES
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.