# Check if B can be formed by permuting the binary digits of A

Given two integer A and B, the task is to check whether the binary representation of B can be generated by permuting the binary digits of A.

Examples:

Input: A = 3, B = 9
Output: Yes
Binary(3) = 0011 and Binary(9) = 1001

Input: A = 6, B = 7
Output: No

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to count the number of set bits in the binary representations of both the numbers, now if they are equal then the answer is Yes or else the answer is No.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function that returns true if the ` `// binary representation of b can be ` `// generated by permuting the ` `// binary digits of a ` `bool` `isPossible(``int` `a, ``int` `b) ` `{ ` ` `  `    ``// Find the count of set bits ` `    ``// in both the integers ` `    ``int` `cntA = __builtin_popcount(a); ` `    ``int` `cntB = __builtin_popcount(b); ` ` `  `    ``// If both the integers have ` `    ``// equal count of set bits ` `    ``if` `(cntA == cntB) ` `        ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a = 3, b = 9; ` ` `  `    ``if` `(isPossible(a, b)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG  ` `{ ` `     `  `    ``// recursive function to count set bits  ` `    ``public` `static` `int` `countSetBits(``int` `n)  ` `    ``{  ` ` `  `        ``// base case  ` `        ``if` `(n == ``0``)  ` `            ``return` `0``;  ` `        ``else` ` `  `            ``// if last bit set add 1 else add 0  ` `            ``return` `(n & ``1``) + countSetBits(n >> ``1``);  ` `    ``}  ` `     `  `    ``// Function that returns true if the  ` `    ``// binary representation of b can be  ` `    ``// generated by permuting the  ` `    ``// binary digits of a  ` `    ``static` `boolean` `isPossible(``int` `a, ``int` `b)  ` `    ``{  ` `     `  `        ``// Find the count of set bits  ` `        ``// in both the integers  ` `        ``int` `cntA = countSetBits(a);  ` `        ``int` `cntB = countSetBits(b);  ` `     `  `        ``// If both the integers have  ` `        ``// equal count of set bits  ` `        ``if` `(cntA == cntB)  ` `            ``return` `true``;  ` `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{  ` `        ``int` `a = ``3``, b = ``9``;  ` `     `  `        ``if` `(isPossible(a, b))  ` `            ``System.out.println(``"Yes"``);  ` `        ``else` `            ``System.out.println(``"No"``);  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# function to count set bits ` `def` `bitsoncount(x): ` `    ``return` `bin``(x).count(``'1'``) ` ` `  `# Function that returns true if the  ` `# binary representation of b can be  ` `# generated by permuting the  ` `# binary digits of a  ` `def` `isPossible(a, b):  ` ` `  `    ``# Find the count of set bits  ` `    ``# in both the integers  ` `    ``cntA ``=` `bitsoncount(a);  ` `    ``cntB ``=` `bitsoncount(b);  ` ` `  `    ``# If both the integers have  ` `    ``# equal count of set bits  ` `    ``if` `(cntA ``=``=` `cntB): ` `        ``return` `True` `    ``return` `False` ` `  `# Driver code  ` `a ``=` `3` `b ``=` `9` ` `  `if` `(isPossible(a, b)): ` `    ``print``(``"Yes"``)  ` `else``: ` `    ``print``(``"No"``)  ` ` `  `# This code is contributed by Sanjit Prasad `

## C#

 `// C# implementation of the approach  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG  ` `{ ` `     `  `    ``// recursive function to count set bits  ` `    ``public` `static` `int` `countSetBits(``int` `n)  ` `    ``{  ` ` `  `        ``// base case  ` `        ``if` `(n == 0)  ` `            ``return` `0;  ` `        ``else` ` `  `            ``// if last bit set.Add 1 else.Add 0  ` `            ``return` `(n & 1) + countSetBits(n >> 1);  ` `    ``}  ` `     `  `    ``// Function that returns true if the  ` `    ``// binary representation of b can be  ` `    ``// generated by permuting the  ` `    ``// binary digits of a  ` `    ``static` `bool` `isPossible(``int` `a, ``int` `b)  ` `    ``{  ` `     `  `        ``// Find the count of set bits  ` `        ``// in both the integers  ` `        ``int` `cntA = countSetBits(a);  ` `        ``int` `cntB = countSetBits(b);  ` `     `  `        ``// If both the integers have  ` `        ``// equal count of set bits  ` `        ``if` `(cntA == cntB)  ` `            ``return` `true``;  ` `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main (String[] args) ` `    ``{  ` `        ``int` `a = 3, b = 9;  ` `     `  `        ``if` `(isPossible(a, b))  ` `            ``Console.WriteLine(``"Yes"``);  ` `        ``else` `            ``Console.WriteLine(``"No"``);  ` `    ``}  ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```Yes
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.