Check if Array forms an increasing-decreasing sequence or vice versa

Given an array arr[] of N integers, the task is to find if the array can be divided into 2 sub-array such that the first sub-array is strictly increasing and the second sub-array is strictly decreasing or vice versa. If the given array can be divided then print “Yes” else print “No”.
Examples: 
 

Input: arr[] = {3, 1, -2, -2, -1, 3} 
Output: Yes 
Explanation: 
First sub-array {3, 1, -2} which is strictly decreasing and second sub-array is {-2, 1, 3} is strictly increasing.
Input: arr[] = {1, 1, 2, 3, 4, 5} 
Output: No 
Explanation: 
The entire array is increasing. 
 

 

Naive Approach: The naive idea is to divide the array into two subarrays at every possible index and explicitly check if the first subarray is strictly increasing and the second subarray is strictly decreasing or vice-versa. If we can break any subarray then print “Yes” else print “No”
Time Complexity: O(N2
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, traverse the array and check for the strictly increasing sequence and then check for strictly decreasing subsequence or vice-versa. Below are the steps: 
 

  1. If arr[1] > arr[0], then check for strictly increasing then strictly decreasing as: 
    • Check for every consecutive pair until at any index i arr[i + 1] is less than arr[i].
    • Now from index i + 1 check for every consecutive pair check if arr[i + 1] is less than arr[i] till the end of the array or not. If at any index i, arr[i] is less than arr[i + 1] then break the loop.
    • If we reach the end in the above step then print “Yes” Else print “No”.
  2. If arr[1] < arr[0], then check for strictly decreasing then strictly increasing as: 
    • Check for every consecutive pair until at any index i arr[i + 1] is greater than arr[i].
    • Now from index i + 1 check for every consecutive pair check if arr[i + 1] is greater than arr[i] till the end of the array or not. If at any index i, arr[i] is greater than arr[i + 1] then break the loop.
    • If we reach the end in the above step then print “Yes” Else print “No”.

Below is the implementation of above approach:
 



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if the given array
// forms an increasing decreasing
// sequence or vice versa
bool canMake(int n, int ar[])
{
    // Base Case
    if (n == 1)
        return true;
    else {
  
        // First subarray is
        // stricly increasing
        if (ar[0] < ar[1]) {
  
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n
                   && ar[i - 1] < ar[i]) {
                i++;
            }
  
            // Check for strictly
            // decreasing condition
            // & find the break point
            while (i + 1 < n
                   && ar[i] > ar[i + 1]) {
                i++;
            }
  
            // If i is equal to
            // length of array
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // First subarray is
        // strictly Decreasing
        else if (ar[0] > ar[1]) {
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n
                   && ar[i - 1] > ar[i]) {
                i++;
            }
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i + 1 < n
                   && ar[i] < ar[i + 1]) {
                i++;
            }
  
            // If i is equal to
            // length of array - 1
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // Condition if ar[0] == ar[1]
        else {
            for (int i = 2; i < n; i++) {
                if (ar[i - 1] <= ar[i])
                    return false;
            }
            return true;
        }
    }
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof arr / sizeof arr[0];
  
    // Function Call
    if (canMake(n, arr)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
class GFG{
  
// Function to check if the given array
// forms an increasing decreasing
// sequence or vice versa
static boolean canMake(int n, int ar[])
{
    // Base Case
    if (n == 1)
        return true;
    else 
    {
  
        // First subarray is
        // stricly increasing
        if (ar[0] < ar[1]) 
        {
  
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n && ar[i - 1] < ar[i]) 
            {
                i++;
            }
  
            // Check for strictly
            // decreasing condition
            // & find the break point
            while (i + 1 < n && ar[i] > ar[i + 1])
            {
                i++;
            }
  
            // If i is equal to
            // length of array
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // First subarray is
        // strictly Decreasing
        else if (ar[0] > ar[1]) 
        {
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n && ar[i - 1] > ar[i]) 
            {
                i++;
            }
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i + 1 < n && ar[i] < ar[i + 1]) 
            {
                i++;
            }
  
            // If i is equal to
            // length of array - 1
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // Condition if ar[0] == ar[1]
        else 
        {
            for (int i = 2; i < n; i++)
            {
                if (ar[i - 1] <= ar[i])
                    return false;
            }
            return true;
        }
    }
}
  
// Driver Code
public static void main(String[] args)
{
    // Given array arr[]
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = arr.length;
  
    // Function Call
    if (!canMake(n, arr)) {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
  
// This code is contributed by Rohit_ranjan

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function to check if the given array
# forms an increasing decreasing
# sequence or vice versa
def canMake(n, ar):
      
    # Base Case
    if (n == 1):
        return True;
    else:
  
        # First subarray is
        # stricly increasing
        if (ar[0] < ar[1]):
  
            i = 1;
  
            # Check for strictly
            # increasing condition
            # & find the break point
            while (i < n and ar[i - 1] < ar[i]):
                i += 1;
  
            # Check for strictly
            # decreasing condition
            # & find the break point
            while (i + 1 < n and ar[i] > ar[i + 1]):
                i += 1;
  
            # If i is equal to
            # length of array
            if (i >= n - 1):
                return True;
            else:
                return False;
  
        # First subarray is
        # strictly Decreasing
        elif (ar[0] > ar[1]):
            i = 1;
  
            # Check for strictly
            # increasing condition
            # & find the break point
            while (i < n and ar[i - 1] > ar[i]):
                i += 1;
  
            # Check for strictly
            # increasing condition
            # & find the break point
            while (i + 1 < n and ar[i] < ar[i + 1]):
                i += 1;
  
            # If i is equal to
            # length of array - 1
            if (i >= n - 1):
                return True;
            else:
                return False;
  
        # Condition if ar[0] == ar[1]
        else:
            for i in range(2, n):
                if (ar[i - 1] <= ar[i]):
                    return False;
  
            return True;
  
# Driver Code
  
# Given array arr
arr = [1, 2, 3, 4, 5];
n = len(arr);
  
# Function Call
if (canMake(n, arr)==False):
    print("Yes");
else:
    print("No");
  
# This code is contributed by PrinciRaj1992 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
class GFG{
  
// Function to check if the given array
// forms an increasing decreasing
// sequence or vice versa
static bool canMake(int n, int []ar)
{
    // Base Case
    if (n == 1)
        return true;
    else 
    {
  
        // First subarray is
        // stricly increasing
        if (ar[0] < ar[1]) 
        {
  
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n && ar[i - 1] < ar[i]) 
            {
                i++;
            }
  
            // Check for strictly
            // decreasing condition
            // & find the break point
            while (i + 1 < n && ar[i] > ar[i + 1])
            {
                i++;
            }
  
            // If i is equal to
            // length of array
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // First subarray is
        // strictly Decreasing
        else if (ar[0] > ar[1]) 
        {
            int i = 1;
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i < n && ar[i - 1] > ar[i]) 
            {
                i++;
            }
  
            // Check for strictly
            // increasing condition
            // & find the break point
            while (i + 1 < n && ar[i] < ar[i + 1]) 
            {
                i++;
            }
  
            // If i is equal to
            // length of array - 1
            if (i >= n - 1)
                return true;
            else
                return false;
        }
  
        // Condition if ar[0] == ar[1]
        else 
        {
            for (int i = 2; i < n; i++)
            {
                if (ar[i - 1] <= ar[i])
                    return false;
            }
            return true;
        }
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    // Given array []arr
    int []arr = { 1, 2, 3, 4, 5 };
    int n = arr.Length;
  
    // Function Call
    if (!canMake(n, arr))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output: 

No





 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.