Skip to content
Related Articles

Related Articles

Check if Array can be reordered such that adjacent difference of a pair is K times of the other

View Discussion
Improve Article
Save Article
  • Last Updated : 31 May, 2022
View Discussion
Improve Article
Save Article

Given an array arr[] of size N and a positive integer K, the task is to check if the array can be reordered such that each pair of consecutive differences differ by a factor of K i.e.,

  • arr[i] − arr[i − 1] = K*(arr[i + 1] − arr[i]), or
  • arr[i + 1] − arr[i] = K*(arr[i] − arr[i − 1])

Note: Different conditions can hold at different indices, the only restriction is that at each index, at least one of the given conditions must hold.

Examples:

Input: arr[] = {16, 19, 18, 21, 24, 22}, K = 2
Output: Yes
Explanation: After Sorting, arr[] = {16, 18, 19, 21, 22, 24}
For index 1, arr[i] − arr[i − 1] = K * (arr[i + 1] − arr[i]) conditions holds.
Since, arr[i] − arr[i − 1] = 2, K * (arr[i + 1] − arr[i]) = 2*1 = 2.
Similarly, for index 3, above condition hold true.
For, index 2 and 4, arr[i+1]−arr[i] = K*(arr[i]−arr[i−1]) holds.

Input: arr[] = {5, 4, 7, 6}, K = 5
Output: No

 

Approach: The problem can be solved based on the following idea:

As the value of K is positive, so the difference between any adjacent pair should be of only one type – either positive or negative. This type of arrangement is possible only if the array is sorted in ascending or descending order.
Therefore, check the difference between adjacent elements in sorted order to find if a arrangement exists or not.

To solve the problem based on the above idea, follow the steps mentioned below to implement the approach:

  • Sort the array in increasing order.
  • Run a loop from i = 1 to N-2
    • If any one of the below conditions holds true then continue
      •  (next – curr) == k*(curr – prev)
      •  (curr – prev) == k*(next – curr)
    • Otherwise, print No and return from the function.
  • If the loop ends and the condition holds true for all the pairs of adjacent differences then return true.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check the conditions
string checkArray(int* arr, int n, int k)
{
    // Sort the array in increasing order
    sort(arr, arr + n);
 
    // Run a loop from index 1 to N -2
    for (int i = 1; i <= n - 2; i++) {
 
        // Store previous element in prev
        int prev = arr[i - 1];
 
        // Store current element in curr
        int curr = arr[i];
 
        // Store next element in next
        int next = arr[i + 1];
 
        // If any conditions holds true
        // then continue
        if (((next - curr) == k * (curr - prev))
            || ((curr - prev) == k * (next - curr))) {
            continue;
        }
 
        // Else print No and return
        else {
            return "No";
        }
    }
 
    // We reach here only if the condition is valid
    // for all index except 0 and N-1
    return "Yes";
}
 
// Driver Code
int main()
{
    int arr[] = { 16, 19, 18, 21, 24, 22 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 2;
 
    // Function call
    cout << checkArray(arr, N, K);
    return 0;
}

Java




// Java code to implement the above approach
import java.io.*;
import java.util.*;
 
class GFG {
    // Function to check the conditions
    public static String checkArray(int arr[], int n, int k)
    {
        // Sort the array in increasing order
        Arrays.sort(arr);
 
        // Run a loop from index 1 to N -2
        for (int i = 1; i <= n - 2; i++) {
 
            // Store previous element in prev
            int prev = arr[i - 1];
 
            // Store current element in curr
            int curr = arr[i];
 
            // Store next element in next
            int next = arr[i + 1];
 
            // If any conditions holds true
            // then continue
            if (((next - curr) == k * (curr - prev))
                || ((curr - prev) == k * (next - curr))) {
                continue;
            }
 
            // Else print No and return
            else {
                return "No";
            }
        }
 
        // We reach here only if the condition is valid
        // for all index except 0 and N-1
        return "Yes";
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 16, 19, 18, 21, 24, 22 };
        int N = arr.length;
        int K = 2;
 
        // Function call
        System.out.print(checkArray(arr, N, K));
    }
}
 
// This code is contributed by Rohit Pradhan

Python3




# Python code to implement the approach
 
# Function to check the conditions
def checkArray(arr, n, k):
 
    # Sort the array in increasing order
    arr.sort();
 
    # Run a loop from index 1 to N -2
    for i in range(1, n - 1):
 
        # Store previous element in prev
        prev = arr[i - 1];
 
        # Store current element in curr
        curr = arr[i];
 
        # Store next element in next
        next = arr[i + 1];
 
        # If any conditions holds true
        # then continue
        if (((next - curr) == k * (curr - prev))
            or ((curr - prev) == k * (next - curr))):
            continue
         
        # Else print No and return
        else:
            return "No";
         
    # We reach here only if the condition is valid
    # for all index except 0 and N-1
    return "Yes";
 
# Driver Code
arr = [ 16, 19, 18, 21, 24, 22 ];
N = len(arr)
K = 2;
 
# Function call
print(checkArray(arr, N, K));
 
# This code is contributed by Saurabh Jaiswal

C#




// C# code to implement the above approach
using System;
public class GFG
{
 
  // Function to check the conditions
  public static string checkArray(int[] arr, int n, int k)
  {
 
    // Sort the array in increasing order
    Array.Sort(arr);
 
    // Run a loop from index 1 to N -2
    for (int i = 1; i <= n - 2; i++) {
 
      // Store previous element in prev
      int prev = arr[i - 1];
 
      // Store current element in curr
      int curr = arr[i];
 
      // Store next element in next
      int next = arr[i + 1];
 
      // If any conditions holds true
      // then continue
      if (((next - curr) == k * (curr - prev))
          || ((curr - prev) == k * (next - curr))) {
        continue;
      }
 
      // Else print No and return
      else {
        return "No";
      }
    }
 
    // We reach here only if the condition is valid
    // for all index except 0 and N-1
    return "Yes";
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int[] arr = { 16, 19, 18, 21, 24, 22 };
    int N = arr.Length;
    int K = 2;
 
    // Function call
    Console.WriteLine(checkArray(arr, N, K));
  }
}
 
// this code is a contributed by phasing17

Javascript




<script>
 
// JavaScript code to implement the approach
 
// Function to check the conditions
function checkArray(arr, n, k)
{
 
    // Sort the array in increasing order
    arr.sort();
 
    // Run a loop from index 1 to N -2
    for (let i = 1; i <= n - 2; i++) {
 
        // Store previous element in prev
        let prev = arr[i - 1];
 
        // Store current element in curr
        let curr = arr[i];
 
        // Store next element in next
        let next = arr[i + 1];
 
        // If any conditions holds true
        // then continue
        if (((next - curr) == k * (curr - prev))
            || ((curr - prev) == k * (next - curr))) {
            continue;
        }
 
        // Else print No and return
        else {
            return "No";
        }
    }
 
    // We reach here only if the condition is valid
    // for all index except 0 and N-1
    return "Yes";
}
 
// Driver Code
let arr = [ 16, 19, 18, 21, 24, 22 ];
let N = arr.length;
let K = 2;
 
// Function call
document.write(checkArray(arr, N, K),"</br>");
 
// This code is contributed by shinjanpatra
 
</script>

Output

Yes

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!