Related Articles

# Check if array can be divided into two sub-arrays such that their absolute difference is K

• Difficulty Level : Easy
• Last Updated : 03 May, 2021

Given an array arr[] and an integer K, the task is to find whether the array can be divided into two sub-arrays such that the absolute difference of the sum of the elements of both the sub-arrays is K.
Examples:

Input: arr[] = {2, 4, 5, 1}, K = 0
Output: Yes
{2, 4} and {5, 1} are the two possible sub-arrays.
|(2 + 4) – (5 + 1)| = |6 – 6| = 0
Input: arr[] = {2, 4, 1, 5}, K = 2
Output: No

Approach:

• Assume there exists an answer, let the sum of elements of the sub-array (with smaller sum) is S.
• Sum of the elements of the second array will be S + K.
• And, S + S + K must be equal to sum of all the elements of the array say totalSum = 2 *S + K.
• S = (totalSum – K) / 2
• Now, traverse the array till we achieve a sum of S starting from the first element and if its not possible then print No.
• Else print Yes.

Below is the implementation of the above approach:

## C++

 `#include ``using` `namespace` `std;` `// Function that return true if it is possible``// to divide the array into sub-arrays``// that satisfy the given condition``bool` `solve(``int` `array[], ``int` `size, ``int` `k)``{``    ``// To store the sum of all the elements``    ``// of the array``    ``int` `totalSum = 0;``    ``for` `(``int` `i = 0; i < size; i++)``        ``totalSum += array[i];` `    ``// Sum of any sub-array cannot be``    ``// a floating point value``    ``if` `((totalSum - k) % 2 == 1)``        ``return` `false``;` `    ``// Required sub-array sum``    ``int` `S = (totalSum - k) / 2;` `    ``int` `sum = 0;``    ``for` `(``int` `i = 0; i < size; i++) {``        ``sum += array[i];``        ``if` `(sum == S)``            ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver Code``int` `main()``{``    ``int` `array[] = { 2, 4, 1, 5 };``    ``int` `k = 2;``    ``int` `size = ``sizeof``(array) / ``sizeof``(array[0]);``    ``if` `(solve(array, size, k))``        ``cout << ``"Yes"` `<< endl;``    ``else``        ``cout << ``"No"` `<< endl;``}`

## Java

 `/*package whatever //do not write package name here */` `import` `java.io.*;` `class` `GFG``{``    ` `// Function that return true if it is possible``// to divide the array into sub-arrays``// that satisfy the given condition``static` `boolean` `solve(``int` `array[], ``int` `size, ``int` `k)``{``    ``// To store the sum of all the elements``    ``// of the array``    ``int` `totalSum = ``0``;``    ``for` `(``int` `i = ``0``; i < size; i++)``        ``totalSum += array[i];` `    ``// Sum of any sub-array cannot be``    ``// a floating point value``    ``if` `((totalSum - k) % ``2` `== ``1``)``        ``return` `false``;` `    ``// Required sub-array sum``    ``int` `S = (totalSum - k) / ``2``;` `    ``int` `sum = ``0``;``    ``for` `(``int` `i = ``0``; i < size; i++)``    ``{``        ``sum += array[i];``        ``if` `(sum == S)``            ``return` `true``;``    ``}``    ``return` `false``;``}` `    ``// Driver Code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `array[] = { ``2``, ``4``, ``1``, ``5` `};``        ``int` `k = ``2``;``        ``int` `size = array.length;``        ` `        ``if` `(solve(array, size, k))``            ``System.out.println (``"Yes"``);``        ``else``            ``System.out.println (``"No"` `);``    ``}``}` `// This Code is contributed by akt_mit`

## Python3

 `# Function that return true if it is possible``# to divide the array into sub-arrays``# that satisfy the given condition``def` `solve(array,size,k):``    ``# To store the sum of all the elements``    ``# of the array``    ``totalSum ``=` `0``    ``for` `i ``in` `range` `(``0``,size):``        ``totalSum ``+``=` `array[i]` `    ``# Sum of any sub-array cannot be``    ``# a floating point value``    ``if` `((totalSum ``-` `k) ``%` `2` `=``=` `1``):``        ``return` `False` `    ``# Required sub-array sum``    ``S ``=` `(totalSum ``-` `k) ``/` `2` `    ``sum` `=` `0``;``    ``for` `i ``in` `range` `(``0``,size):``        ``sum` `+``=` `array[i]``        ``if` `(``sum` `=``=` `S):``            ``return` `True``    `  `    ``return` `False`  `# Driver Code``array``=` `[``2``, ``4``, ``1``, ``5``]``k ``=` `2``n ``=` `4``if` `(solve(array, n, k)):``    ``print``(``"Yes"``)``else``:``    ``print``(``"No"``)` `# This code is contributed by iAyushRaj.`

## C#

 `using` `System;``class` `GFG``{` `// Function that return true if it is possible``// to divide the array into sub-arrays``// that satisfy the given condition``public` `static` `bool` `solve(``int``[] array, ``int` `size, ``int` `k)``{``    ``// To store the sum of all the elements``    ``// of the array``    ``int` `totalSum = 0;``    ``for` `(``int` `i = 0; i < size; i++)``        ``totalSum += array[i];` `    ``// Sum of any sub-array cannot be``    ``// a floating point value``    ``if` `((totalSum - k) % 2 == 1)``        ``return` `false``;` `    ``// Required sub-array sum``    ``int` `S = (totalSum - k) / 2;` `    ``int` `sum = 0;``    ``for` `(``int` `i = 0; i < size; i++)``    ``{``        ``sum += array[i];``        ``if` `(sum == S)``            ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int``[] array = { 2, 4, 1, 5 };``    ``int` `k = 2;``    ``int` `size = 4;``    ` `    ``if` `(solve(array, size, k))``        ``Console.Write(``"Yes"``);``    ``else``        ``Console.Write(``"No"``);``}``}` `// This code is contributed by iAyushRaj.`

## PHP

 ``

## Javascript

 ``
Output:
`No`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up