# Check if any permutation of string is a K times repeated string

Given a string **S** and an integer **K**, the task is to check that if any permutation of the string can be formed by **K** times repeating any other string.**Examples:**

Input:S = “abba”, K = 2Output:YesExplanation:

Permutations of given string –

{“aabb”, “abab”, “abba”, “baab”, “baba”, “bbaa”}

As “abab” is repeating string of “ab”+”ab” = “abab”, which is also permutation of string.Input:S = “abcabd”, K = 2Output:NoExplanation:

There is no such repeating string in all permutations of the given string.

**Approach:** The idea is to find the frequency of each character of the string and check that the frequency of the character is a multiple of the given integer **K**. If the frequency of all characters of the string is divisible by **K**, then there is a string which is a permutation of the given string and also a K times repeated string.

Below is the implementation of the above approach:

## C++

`// C++ implementation to check that` `// the permutation of the given string` `// is K times repeated string` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to check that permutation` `// of the given string is a` `// K times repeating String` `bool` `repeatingString(string s,` ` ` `int` `n, ` `int` `k)` `{` ` ` `// if length of string is` ` ` `// not divisible by K` ` ` `if` `(n % k != 0) {` ` ` `return` `false` `;` ` ` `}` ` ` ` ` `// Frequency Array` ` ` `int` `frequency[123];` ` ` ` ` `// Initially frequency of each` ` ` `// character is 0` ` ` `for` `(` `int` `i = 0; i < 123; i++) {` ` ` `frequency[i] = 0;` ` ` `}` ` ` ` ` `// Computing the frequency of` ` ` `// each character in the string` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `frequency[s[i]]++;` ` ` `}` ` ` `int` `repeat = n / k;` ` ` ` ` `// Loop to check that frequency of` ` ` `// every character of the string` ` ` `// is divisible by K` ` ` `for` `(` `int` `i = 0; i < 123; i++) {` ` ` `if` `(frequency[i] % repeat != 0) {` ` ` `return` `false` `;` ` ` `}` ` ` `}` ` ` `return` `true` `;` `}` `// Driver Code` `int` `main()` `{` ` ` `string s = ` `"abcdcba"` `;` ` ` `int` `n = s.size();` ` ` `int` `k = 3;` ` ` `if` `(repeatingString(s, n, k)) {` ` ` `cout << ` `"Yes"` `<< endl;` ` ` `}` ` ` `else` `{` ` ` `cout << ` `"No"` `<< endl;` ` ` `}` ` ` `return` `0;` `}` |

## Java

`// Java implementation to check that` `// the permutation of the given String` `// is K times repeated String` `class` `GFG{` `// Function to check that permutation` `// of the given String is a` `// K times repeating String` `static` `boolean` `repeatingString(String s,` ` ` `int` `n, ` `int` `k)` `{` ` ` `// if length of String is` ` ` `// not divisible by K` ` ` `if` `(n % k != ` `0` `) {` ` ` `return` `false` `;` ` ` `}` ` ` ` ` `// Frequency Array` ` ` `int` `[]frequency = ` `new` `int` `[` `123` `];` ` ` ` ` `// Initially frequency of each` ` ` `// character is 0` ` ` `for` `(` `int` `i = ` `0` `; i < ` `123` `; i++) {` ` ` `frequency[i] = ` `0` `;` ` ` `}` ` ` ` ` `// Computing the frequency of` ` ` `// each character in the String` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) {` ` ` `frequency[s.charAt(i)]++;` ` ` `}` ` ` `int` `repeat = n / k;` ` ` ` ` `// Loop to check that frequency of` ` ` `// every character of the String` ` ` `// is divisible by K` ` ` `for` `(` `int` `i = ` `0` `; i < ` `123` `; i++) {` ` ` `if` `(frequency[i] % repeat != ` `0` `) {` ` ` `return` `false` `;` ` ` `}` ` ` `}` ` ` `return` `true` `;` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `String s = ` `"abcdcba"` `;` ` ` `int` `n = s.length();` ` ` `int` `k = ` `3` `;` ` ` `if` `(repeatingString(s, n, k)) {` ` ` `System.out.print(` `"Yes"` `+` `"\n"` `);` ` ` `}` ` ` `else` `{` ` ` `System.out.print(` `"No"` `+` `"\n"` `);` ` ` `}` `}` `}` `// This code is contributed by PrinciRaj1992` |

## Python3

`# Python3 implementation to check that` `# the permutation of the given string` `# is K times repeated string` `# Function to check that permutation` `# of the given string is a` `# K times repeating String` `def` `repeatingString(s, n, k):` ` ` ` ` `# If length of string is` ` ` `# not divisible by K` ` ` `if` `(n ` `%` `k !` `=` `0` `):` ` ` `return` `False` ` ` `# Frequency Array` ` ` `frequency ` `=` `[` `0` `for` `i ` `in` `range` `(` `123` `)]` ` ` `# Initially frequency of each` ` ` `# character is 0` ` ` `for` `i ` `in` `range` `(` `123` `):` ` ` `frequency[i] ` `=` `0` ` ` ` ` `# Computing the frequency of` ` ` `# each character in the string` ` ` `for` `i ` `in` `range` `(n):` ` ` `frequency[s[i]] ` `+` `=` `1` ` ` `repeat ` `=` `n ` `/` `/` `k` ` ` ` ` `# Loop to check that frequency of` ` ` `# every character of the string` ` ` `# is divisible by K` ` ` `for` `i ` `in` `range` `(` `123` `):` ` ` `if` `(frequency[i] ` `%` `repeat !` `=` `0` `):` ` ` `return` `False` ` ` `return` `True` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `s ` `=` `"abcdcba"` ` ` `n ` `=` `len` `(s)` ` ` `k ` `=` `3` ` ` `if` `(repeatingString(s, n, k)):` ` ` `print` `(` `"Yes"` `)` ` ` `else` `:` ` ` `print` `(` `"No"` `)` ` ` `# This code is contributed by Samarth` |

## C#

`// C# implementation to check that` `// the permutation of the given String` `// is K times repeated String` `using` `System;` `class` `GFG{` ` ` `// Function to check that permutation` `// of the given String is a` `// K times repeating String` `static` `bool` `repeatingString(String s,` ` ` `int` `n, ` `int` `k)` `{` ` ` `// if length of String is` ` ` `// not divisible by K` ` ` `if` `(n % k != 0) {` ` ` `return` `false` `;` ` ` `}` ` ` ` ` `// Frequency Array` ` ` `int` `[]frequency = ` `new` `int` `[123];` ` ` ` ` `// Initially frequency of each` ` ` `// character is 0` ` ` `for` `(` `int` `i = 0; i < 123; i++) {` ` ` `frequency[i] = 0;` ` ` `}` ` ` ` ` `// Computing the frequency of` ` ` `// each character in the String` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `frequency[s[i]]++;` ` ` `}` ` ` ` ` `int` `repeat = n / k;` ` ` ` ` `// Loop to check that frequency of` ` ` `// every character of the String` ` ` `// is divisible by K` ` ` `for` `(` `int` `i = 0; i < 123; i++) {` ` ` ` ` `if` `(frequency[i] % repeat != 0) {` ` ` `return` `false` `;` ` ` `}` ` ` `}` ` ` ` ` `return` `true` `;` `}` ` ` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `String s = ` `"abcdcba"` `;` ` ` `int` `n = s.Length;` ` ` `int` `k = 3;` ` ` ` ` `if` `(repeatingString(s, n, k)) {` ` ` `Console.Write(` `"Yes"` `+` `"\n"` `);` ` ` `}` ` ` `else` `{` ` ` `Console.Write(` `"No"` `+` `"\n"` `);` ` ` `}` `}` `}` ` ` `// This code is contributed by Rajput-Ji` |

**Output:**

No

**Performance Analysis:** **Time Complexity** O(N) **Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.