# Check if an array of 1s and 2s can be divided into 2 parts with equal sum

• Difficulty Level : Medium
• Last Updated : 22 Jun, 2022

Given an array containing N elements, each element is either 1 or 2. The task is to find out whether the array can be divided into 2 parts such that sum of elements in both parts is equal.
Examples:

```Input : N = 3, arr[] = {1, 1, 2}
Output : YES

Input : N = 4, arr[] = {1, 2, 2, }
Output : NO```

The idea is to observe that the array can be divided into two parts with equal sum only if the overall sum of the array is even, i.e. divisible by 2.
Let’s say the overall sum of the array is denoted by sum.
Now, there arises two cases:

• If sum/2 is even: When the value of sum/2 is also even, it means that sum of each of the two parts is also even and we need not to consider anything special. So, return true for this case.
• If sum/2 is odd: When the value of sum/2 is ODD, it means that sum of each part is also odd. This is only possible when each of the two parts of the array contains atleast one 1. Consider the cases when sum = 2 or 6 or 10. So, when sum/2 is odd, check if there is atleast one 1 in the array.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above``// approach:` `#include ``using` `namespace` `std;` `// Function to check if it is possible to``// split the array in two parts with``// equal sum``bool` `isSpiltPossible(``int` `n, ``int` `a[])``{``    ``int` `sum = 0, c1 = 0;` `    ``// Calculate sum of elements``    ``// and count of 1's``    ``for` `(``int` `i = 0; i < n; i++) {``        ``sum += a[i];` `        ``if` `(a[i] == 1) {``            ``c1++;``        ``}``    ``}` `    ``// If total sum is odd, return False``    ``if` `(sum % 2)``        ``return` `false``;` `    ``// If sum of each part is even,``    ``// return True``    ``if` `((sum / 2) % 2 == 0)``        ``return` `true``;` `    ``// If sum of each part is even but``    ``// there is atleast one 1``    ``if` `(c1 > 0)``        ``return` `true``;``    ``else``        ``return` `false``;``}` `// Driver Code``int` `main()``{``    ``int` `n = 3;``    ``int` `a[] = { 1, 1, 2 };` `    ``if` `(isSpiltPossible(n, a))``        ``cout << ``"YES"``;``    ``else``        ``cout << ``"NO"``;` `    ``return` `0;``}`

## Java

 `// Java implementation of the above``// approach:``class` `GFG``{``    ` `// Function to check if it is possible``// to split the array in two parts with``// equal sum``static` `boolean` `isSpiltPossible(``int` `n,``                               ``int` `a[])``{``    ``int` `sum = ``0``, c1 = ``0``;` `    ``// Calculate sum of elements``    ``// and count of 1's``    ``for` `(``int` `i = ``0``; i < n; i++)``    ``{``        ``sum += a[i];` `        ``if` `(a[i] == ``1``)``        ``{``            ``c1++;``        ``}``    ``}` `    ``// If total sum is odd, return False``    ``if``(sum % ``2` `!= ``0``)``        ``return` `false``;` `    ``// If sum of each part is even,``    ``// return True``    ``if` `((sum / ``2``) % ``2` `== ``0``)``        ``return` `true``;` `    ``// If sum of each part is even but``    ``// there is atleast one 1``    ``if` `(c1 > ``0``)``        ``return` `true``;``    ``else``        ``return` `false``;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `n = ``3``;``    ``int` `a[] = { ``1``, ``1``, ``2` `};` `    ``if` `(isSpiltPossible(n, a))``        ``System.out.println(``"YES"``);``    ``else``        ``System.out.println(``"NO"``);``}``}` `// This code is contributed by``// Code Mech`

## Python3

 `# Python3 implementation of the above``# approach:` `# Function to check if it is possible``# to split the array in two halfs with``# equal Sum``def` `isSpiltPossible(n, a):` `    ``Sum` `=` `0``    ``c1 ``=` `0` `    ``# Calculate Sum of elements``    ``# and count of 1's``    ``for` `i ``in` `range``(n):``        ``Sum` `+``=` `a[i]` `        ``if` `(a[i] ``=``=` `1``):``            ``c1 ``+``=` `1` `    ``# If total Sum is odd, return False``    ``if` `(``Sum` `%` `2``):``        ``return` `False` `    ``# If Sum of each half is even,``    ``# return True``    ``if` `((``Sum` `/``/` `2``) ``%` `2` `=``=` `0``):``        ``return` `True` `    ``# If Sum of each half is even``    ``# but there is atleast one 1``    ``if` `(c1 > ``0``):``        ``return` `True``    ``else``:``        ``return` `False` `# Driver Code``n ``=` `3``a ``=` `[ ``1``, ``1``, ``2` `]` `if` `(isSpiltPossible(n, a)):``    ``print``(``"YES"``)``else``:``    ``print``(``"NO"``)` `# This code is contributed``# by Mohit Kumar`

## C#

 `// C# implementation of the above``// approach:``using` `System;` `class` `GFG``{``    ` `// Function to check if it is possible``// to split the array in two parts with``// equal sum``static` `bool` `isSpiltPossible(``int` `n,``                            ``int``[] a)``{``    ``int` `sum = 0, c1 = 0;` `    ``// Calculate sum of elements``    ``// and count of 1's``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``sum += a[i];` `        ``if` `(a[i] == 1)``        ``{``            ``c1++;``        ``}``    ``}` `    ``// If total sum is odd, return False``    ``if``(sum % 2 != 0)``        ``return` `false``;` `    ``// If sum of each part is even,``    ``// return True``    ``if` `((sum / 2) % 2 == 0)``        ``return` `true``;` `    ``// If sum of each part is even but``    ``// there is atleast one 1``    ``if` `(c1 > 0)``        ``return` `true``;``    ``else``        ``return` `false``;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `n = 3;``    ``int``[] a = { 1, 1, 2 };` `    ``if` `(isSpiltPossible(n, a))``        ``Console.WriteLine(``"YES"``);``    ``else``        ``Console.WriteLine(``"NO"``);``}``}` `// This code is contributed by``// Code Mech`

## PHP

 ` 0)``        ``return` `true;``    ``else``        ``return` `false;``}` `// Driver Code``\$n` `= 3;``\$a` `= ``array``( 1, 1, 2 );` `if` `(isSpiltPossible(``\$n``, ``\$a``))``    ``echo``(``"YES"``);``else``    ``echo``(``"NO"``);` `// This code is contributed by``// Code Mech``?>`

## Javascript

 ``

Output:

`YES`

Time Complexity: O(N), since there runs a loop from 0 to (n – 1).
Auxiliary Space: O(1), since no extra space has been taken.

My Personal Notes arrow_drop_up