Related Articles

# Check if an Array is a permutation of numbers from 1 to N : Set 2

• Last Updated : 21 May, 2021

Given an array arr containing N positive integers, the task is to check if the given array arr represents a permutation or not.

A sequence of N integers is called a permutation if it contains all integers from 1 to N exactly once.

Examples:

Input: arr[] = {1, 2, 5, 3, 2}
Output: No
Explanation:
The given array contains 2 twice, and 4 is missing for the array to represent a permutation of length 5.
Input: arr[] = {1, 2, 5, 3, 4}
Output: Yes
Explanation:
The given array contains all integers from 1 to 5 exactly once. Hence, it represents a permutation of length 5.

Naive Approach: in O(N2) Time
This approach is mentioned here
Another Approach: in O(N) Time and O(N) Space
This approach is mentioned here.
Efficient Approach: Using HashTable

1. Create a HashTable of N size to store the frequency count of each number from 1 to N
2. Traverse through the given array and store the frequency of each number in the HashTable.
3. Then traverse the HashTable and check if all the numbers from 1 to N have a frequency of 1 or not.
4. Print “Yes” if the above condition is True, Else “No”.

Below is the implementation of the above approach:

## CPP

 `// C++ program to decide if an array``// represents a permutation or not``#include ``using` `namespace` `std;` `// Function to check if an``// array represents a permutation or not``string permutation(``int` `arr[], ``int` `N)``{` `    ``int` `hash[N + 1] = { 0 };` `    ``// Counting the frequency``    ``for` `(``int` `i = 0; i < N; i++) {``        ``hash[arr[i]]++;``    ``}` `    ``// Check if each frequency is 1 only``    ``for` `(``int` `i = 1; i <= N; i++) {``        ``if` `(hash[i] != 1)``            ``return` `"No"``;``    ``}` `    ``return` `"Yes"``;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 1, 5, 5, 3 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``);``    ``cout << permutation(arr, n) << endl;` `    ``return` `0;``}`

## Java

 `// Java program to decide if an array``// represents a permutation or not``class` `GFG{`` ` `// Function to check if an``// array represents a permutation or not``static` `String permutation(``int` `arr[], ``int` `N)``{`` ` `    ``int` `[]hash = ``new` `int``[N + ``1``];`` ` `    ``// Counting the frequency``    ``for` `(``int` `i = ``0``; i < N; i++) {``        ``hash[arr[i]]++;``    ``}`` ` `    ``// Check if each frequency is 1 only``    ``for` `(``int` `i = ``1``; i <= N; i++) {``        ``if` `(hash[i] != ``1``)``            ``return` `"No"``;``    ``}`` ` `    ``return` `"Yes"``;``}`` ` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``1``, ``1``, ``5``, ``5``, ``3` `};``    ``int` `n = arr.length;``    ``System.out.print(permutation(arr, n) +``"\n"``);``}``}` `// This code is contributed by Princi Singh`

## Python3

 `# Python3 program to decide if an array``# represents a permutation or not` `# Function to check if an``# array represents a permutation or not``def` `permutation(arr,  N) :` `    ``hash` `=` `[``0``]``*``(N ``+` `1``);` `    ``# Counting the frequency``    ``for` `i ``in` `range``(N) :``        ``hash``[arr[i]] ``+``=` `1``;` `    ``# Check if each frequency is 1 only``    ``for` `i ``in` `range``(``1``, N ``+` `1``) :``        ``if` `(``hash``[i] !``=` `1``) :``            ``return` `"No"``;` `    ``return` `"Yes"``;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``arr ``=` `[ ``1``, ``1``, ``5``, ``5``, ``3` `];``    ``n ``=` `len``(arr);``    ``print``(permutation(arr, n));` `    ``# This code is contributed by Yash_R`

## C#

 `// C# program to decide if an array``// represents a permutation or not``using` `System;` `class` `GFG{`` ` `    ``// Function to check if an``    ``// array represents a permutation or not``    ``static` `string` `permutation(``int` `[]arr, ``int` `N)``    ``{``     ` `        ``int` `[]hash = ``new` `int``[N + 1];``     ` `        ``// Counting the frequency``        ``for` `(``int` `i = 0; i < N; i++) {``            ``hash[arr[i]]++;``        ``}``     ` `        ``// Check if each frequency is 1 only``        ``for` `(``int` `i = 1; i <= N; i++) {``            ``if` `(hash[i] != 1)``                ``return` `"No"``;``        ``}``     ` `        ``return` `"Yes"``;``    ``}``     ` `    ``// Driver code``    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``int` `[]arr = { 1, 1, 5, 5, 3 };``        ``int` `n = arr.Length;``        ``Console.Write(permutation(arr, n) +``"\n"``);``    ``}``}` `// This code is contributed by Yash_R`

## Javascript

 ``
Output:
`No`

Time Complexity: O(N)
Auxiliary Space Complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up