Open In App
Related Articles

Check if an array can be divided into pairs whose sum is divisible by k

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

Given an array of integers and a number k, write a function that returns true if the given array can be divided into pairs such that the sum of every pair is divisible by k.

Examples: 

Input: arr[] = {9, 7, 5, 3}, k = 6 
Output: True 
We can divide the array into (9, 3) and 
(7, 5). Sum of both of these pairs 
is a multiple of 6.

Input: arr[] = {92, 75, 65, 48, 45, 35}, k = 10 
Output: True 
We can divide the array into (92, 48), (75, 65). 
and (45, 35). The sum of all these pairs is a 
multiple of 10.

Input: arr[] = {91, 74, 66, 48}, k = 10 
Output: False 

A Simple Solution is to iterate through every element arr[i]. Find if there is another not yet visited element that has a remainder like (k – arr[i]%k). If there is no such element, return false. If a pair is found, then mark both elements as visited. The time complexity of this solution is O(n2 and it requires O(n) extra space.

Below is the implementation of the above approach:

C++

// A C++ program to check if arr[0..n-1]
// can be divided in pairs such that
// every pair is divisible by k
 
#include <bits/stdc++.h>
using namespace std;
 
bool canPairs(int nums[], int n, int k)
{
    // Array with odd length
    // cannot be divided
    if (n % 2 == 1)
        return false;
 
    // Initialize count = 0
    int count = 0;
 
    vector<int> vis(n, -1);
 
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            if ((nums[i] + nums[j]) % k == 0
                and vis[i] == -1 and vis[j] == -1) {
 
                // if pair is divisible increment
                // the count and mark elements
                // as visited
                count++;
                vis[i] = 1;
                vis[j] = 1;
            }
        }
    }
 
    if (count == n / 2)
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
    int arr[] = { 92, 75, 65, 48, 45, 35 };
    int k = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    canPairs(arr, n, k) ? cout << "True" : cout << "False";
    return 0;
}
 
// This code is contributed by Arpit Jain

                    

Java

/*package whatever //do not write package name here */
 
import java.util.*;
 
class GFG {
  static boolean canPairs(int nums[], int n, int k)
  {
    // Array with odd length
    // cannot be divided
    if (n % 2 == 1)
      return false;
 
    // Initialize count = 0
    int count = 0;
 
    int vis[] = new int[n];
    Arrays.fill(vis,-1);
 
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
        if ((nums[i] + nums[j]) % k == 0 && vis[i] == -1 && vis[j] == -1) {
 
          // if pair is divisible increment
          // the count and mark elements
          // as visited
          count++;
          vis[i] = 1;
          vis[j] = 1;
        }
      }
    }
 
    if (count == n / 2)
      return true;
 
    return false;
  }
 
  public static void main (String[] args) {
    int arr[] = { 92, 75, 65, 48, 45, 35 };
    int k = 10;
    int n = arr.length;
 
    // Function call
    if(canPairs(arr, n, k)){
      System.out.println("True");
    }else{
      System.out.println("False");
    
  }
}
 
// This code is contributed by aadityaburujwale.

                    

Python3

# A Python3 program to check if arr[0..n-1]
# can be divided in pairs such that
# every pair is divisible by k
def canPairs(nums, n, k):
    # Array with odd length
    # cannot be divided
    if (n % 2 == 1):
        return False
 
    # Initialize count = 0
    count = 0
 
    vis = [-1] * n
 
    for i in range(0,n):
        for j in range(i+1,n):
            if ((nums[i] + nums[j]) % k == 0 and vis[i] == -1 and vis[j] == -1):
                # if pair is divisible increment
                # the count and mark elements
                # as visited
                count+=1
                vis[i] = 1
                vis[j] = 1
                 
    if (count == n / 2):
        return True
    else:
        return False
 
# Driver code
arr = [ 92, 75, 65, 48, 45, 35 ]
k = 10
n = len(arr)
 
# Function call
if(canPairs(arr, n, k)):
    print("True")
else:
    print("False")
 
# This code is contributed by akashish__

                    

C#

// Include namespace system
using System;
using System.Linq;
using System.Collections;
 
public class GFG
{
  public static bool canPairs(int[] nums, int n, int k)
  {
    // Array with odd length
    // cannot be divided
    if (n % 2 == 1)
    {
      return false;
    }
    // Initialize count = 0
    var count = 0;
    int[] vis = new int[n];
    System.Array.Fill(vis,-1);
    for (int i = 0; i < n; i++)
    {
      for (int j = i + 1; j < n; j++)
      {
        if ((nums[i] + nums[j]) % k == 0 && vis[i] == -1 && vis[j] == -1)
        {
          // if pair is divisible increment
          // the count and mark elements
          // as visited
          count++;
          vis[i] = 1;
          vis[j] = 1;
        }
      }
    }
    if (count == (int)(n / 2))
    {
      return true;
    }
    return false;
  }
  public static void Main(String[] args)
  {
    int[] arr = {92, 75, 65, 48, 45, 35};
    var k = 10;
    var n = arr.Length;
    // Function call
    if (GFG.canPairs(arr, n, k))
    {
      Console.WriteLine("True");
    }
    else
    {
      Console.WriteLine("False");
    }
  }
}
 
// This code is contributed by aadityaburujwale.

                    

Javascript

// Javascript program to check if arr[0..n-1]
// can be divided in pairs such that
// every pair is divisible by k
 
function canPairs(nums, n, k)
{
    // Array with odd length
    // cannot be divided
    if (n % 2 === 1)
        return false;
 
    // Initialize count = 0
    var count = 0;
 
    var vis = new Array(n).fill(-1);
 
    for (var i = 0; i < n; i++) {
        for (var j = i + 1; j < n; j++) {
            if ((nums[i] + nums[j]) % k === 0
                && vis[i] === -1 && vis[j] === -1) {
 
                // if pair is divisible increment
                // the count and mark elements
                // as visited
                count++;
                vis[i] = 1;
                vis[j] = 1;
            }
        }
    }
 
    if (count === n / 2)
        return true;
    else
        return false;
}
 
// Driver code
 
    var arr = [ 92, 75, 65, 48, 45, 35 ];
    var k = 10;
    var n = arr.length;
 
    // Function call
    canPairs(arr, n, k) ? console.log("True") : console.log("False");
  
 
// This code is contributed by Abhijeet Kumar(abhijeet19403)

                    

Output
True



Time Complexity: O(n^2)
Auxiliary Space: O(n) for creating a visited array

An Efficient Solution is to use Hashing.

1) If length of given array is odd, return false. 
An odd length array cannot be divided into pairs.
2) Traverse input array and count occurrences of
all remainders (use (arr[i] % k)+k)%k for handling the case of negative integers as well).
freq[((arr[i] % k) + k) % k]++
3) Traverse input array again.
a) Find the remainder of the current element.
b) If remainder divides k into two halves, then
there must be even occurrences of it as it
forms pair with itself only.
c) If the remainder is 0, then there must be
even occurrences.
d) Else, number of occurrences of current
the remainder must be equal to a number of
occurrences of "k - current remainder".

The idea is to use hashing (unordered_map in C++ and HashMap in Java).

The below image is a dry run of the above approach:

Below is the implementation of the above approach:

C++

// A C++ program to check if arr[0..n-1] can be divided
// in pairs such that every pair is divisible by k.
#include <bits/stdc++.h>
using namespace std;
 
// Returns true if arr[0..n-1] can be divided into pairs
// with sum divisible by k.
bool canPairs(int arr[], int n, int k)
{
    // An odd length array cannot be divided into pairs
    if (n & 1)
        return false;
 
    // Create a frequency array to count occurrences
    // of all remainders when divided by k.
    unordered_map<int, int> freq;
 
    // Count occurrences of all remainders
    for (int i = 0; i < n; i++)
        freq[((arr[i] % k) + k) % k]++;
 
    // Traverse input array and use freq[] to decide
    // if given array can be divided in pairs
    for (int i = 0; i < n; i++) {
        // Remainder of current element
        int rem = ((arr[i] % k) + k) % k;
 
        // If remainder with current element divides
        // k into two halves.
        if (2 * rem == k) {
            // Then there must be even occurrences of
            // such remainder
            if (freq[rem] % 2 != 0)
                return false;
        }
 
        // If remainder is 0, then there must be even
        // number of elements with 0 remainder
        else if (rem == 0) {
            if (freq[rem] & 1)
                return false;
        }
 
        // Else number of occurrences of remainder
        // must be equal to number of occurrences of
        // k - remainder
        else if (freq[rem] != freq[k - rem])
            return false;
    }
    return true;
}
 
// Driver code
int main()
{
    int arr[] = { 92, 75, 65, 48, 45, 35 };
    int k = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    canPairs(arr, n, k) ? cout << "True" : cout << "False";
    return 0;
}

                    

Java

// JAVA program to check if arr[0..n-1] can be divided
// in pairs such that every pair is divisible by k.
import java.util.HashMap;
public class Divisiblepair {
    // Returns true if arr[0..n-1] can be divided into pairs
    // with sum divisible by k.
    static boolean canPairs(int ar[], int k)
    {
        // An odd length array cannot be divided into pairs
        if (ar.length % 2 == 1)
            return false;
 
        // Create a frequency array to count occurrences
        // of all remainders when divided by k.
        HashMap<Integer, Integer> hm = new HashMap<>();
 
        // Count occurrences of all remainders
        for (int i = 0; i < ar.length; i++) {
            int rem = ((ar[i] % k) + k) % k;
            if (!hm.containsKey(rem)) {
                hm.put(rem, 0);
            }
            hm.put(rem, hm.get(rem) + 1);
        }
 
        // Traverse input array and use freq[] to decide
        // if given array can be divided in pairs
        for (int i = 0; i < ar.length; i++) {
            // Remainder of current element
            int rem = ((ar[i] % k) + k) % k;
 
            // If remainder with current element divides
            // k into two halves.
            if (2 * rem == k) {
                // Then there must be even occurrences of
                // such remainder
                if (hm.get(rem) % 2 == 1)
                    return false;
            }
 
            // If remainder is 0, then there must be two
            // elements with 0 remainder
            else if (rem == 0) {
                // Then there must be even occurrences of
                // such remainder
                if (hm.get(rem) % 2 == 1)
                    return false;
            }
 
            // Else number of occurrences of remainder
            // must be equal to number of occurrences of
            // k - remainder
            else {
                if (hm.get(k - rem) != hm.get(rem))
                    return false;
            }
        }
        return true;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 92, 75, 65, 48, 45, 35 };
        int k = 10;
 
        // Function call
        boolean ans = canPairs(arr, k);
        if (ans)
            System.out.println("True");
        else
            System.out.println("False");
    }
}
 
// This code is contributed by Rishabh Mahrsee

                    

Python3

# Python3 program to check if
# arr[0..n-1] can be divided
# in pairs such that every
# pair is divisible by k.
from collections import defaultdict
 
# Returns true if arr[0..n-1] can be
# divided into pairs with sum
# divisible by k.
 
 
def canPairs(arr, n, k):
 
    # An odd length array cannot
    # be divided into pairs
    if (n & 1):
        return 0
 
    # Create a frequency array to
    # count occurrences of all
    # remainders when divided by k.
    freq = defaultdict(lambda: 0)
 
    # Count occurrences of all remainders
    for i in range(0, n):
        freq[((arr[i] % k) + k) % k] += 1
 
    # Traverse input array and use
    # freq[] to decide if given array
    # can be divided in pairs
    for i in range(0, n):
 
        # Remainder of current element
        rem = ((arr[i] % k) + k) % k
 
        # If remainder with current element
        # divides k into two halves.
        if (2 * rem == k):
 
            # Then there must be even occurrences
            # of such remainder
            if (freq[rem] % 2 != 0):
                return 0
 
        # If remainder is 0, then there
        # must be two elements with 0 remainder
        else if (rem == 0):
            if (freq[rem] & 1):
                return 0
 
            # Else number of occurrences of
            # remainder must be equal to
            # number of occurrences of
            # k - remainder
        else if (freq[rem] != freq[k - rem]):
             return 0
 
    return 1
 
 
# Driver code
arr = [92, 75, 65, 48, 45, 35]
k = 10
n = len(arr)
 
# Function call
if (canPairs(arr, n, k)):
    print("True")
else:
    print("False")
 
# This code is contributed by Stream_Cipher

                    

C#

// C# program to check if arr[0..n-1]
// can be divided in pairs such that
// every pair is divisible by k.
using System.Collections.Generic;
using System;
 
class GFG {
 
    // Returns true if arr[0..n-1] can be
    // divided into pairs with sum
    // divisible by k.
    static bool canPairs(int[] ar, int k)
    {
 
        // An odd length array cannot
        // be divided into pairs
        if (ar.Length % 2 == 1)
            return false;
 
        // Create a frequency array to count
        // occurrences of all remainders when
        // divided by k.
        Dictionary<Double, int> hm
            = new Dictionary<Double, int>();
 
        // Count occurrences of all remainders
        for (int i = 0; i < ar.Length; i++) {
            int rem = ((ar[i] % k) + k) % k;
            if (!hm.ContainsKey(rem)) {
                hm[rem] = 0;
            }
            hm[rem]++;
        }
 
        // Traverse input array and use freq[]
        // to decide if given array can be
        // divided in pairs
        for (int i = 0; i < ar.Length; i++) {
 
            // Remainder of current element
            int rem = ((ar[i] % k) + k) % k;
 
            // If remainder with current element
            // divides k into two halves.
            if (2 * rem == k) {
 
                // Then there must be even occurrences
                // of such remainder
                if (hm[rem] % 2 == 1)
                    return false;
            }
 
            // If remainder is 0, then there
            // must be two elements with 0
            // remainder
            else if (rem == 0) {
                // Then there must be even occurrences
                // of such remainder
                if (hm[rem] % 2 == 1)
                    return false;
            }
 
            // Else number of occurrences of remainder
            // must be equal to number of occurrences of
            // k - remainder
            else {
                if (hm[k - rem] != hm[rem])
                    return false;
            }
        }
        return true;
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 92, 75, 65, 48, 45, 35 };
        int k = 10;
 
        // Function call
        bool ans = canPairs(arr, k);
        if (ans)
            Console.WriteLine("True");
        else
            Console.WriteLine("False");
    }
}
 
// This code is contributed by Stream_Cipher

                    

Javascript

<script>
 
// Javascript program to check if arr[0..n-1] can be divided
// in pairs such that every pair is divisible by k.
 
    // Returns true if arr[0..n-1] can be divided into pairs
    // with sum divisible by k.
       function canPairs(ar, k)
    {
        // An odd length array cannot be divided into pairs
        if (ar.length % 2 == 1)
            return false;
  
        // Create a frequency array to count occurrences
        // of all remainders when divided by k.
        let hm = new Map();
  
        // Count occurrences of all remainders
        for (let i = 0; i < ar.length; i++) {
            let rem = ((ar[i] % k) + k) % k;
            if (!hm.has(rem)) {
                hm.set(rem, 0);
            }
            hm.set(rem, hm.get(rem) + 1);
        }
  
        // Traverse input array and use freq[] to decide
        // if given array can be divided in pairs
        for (let i = 0; i < ar.length; i++) {
            // Remainder of current element
            let rem = ((ar[i] % k) + k) % k;
  
            // If remainder with current element divides
            // k into two halves.
            if (2 * rem == k) {
                // Then there must be even occurrences of
                // such remainder
                if (hm.get(rem) % 2 == 1)
                    return false;
            }
  
            // If remainder is 0, then there must be two
            // elements with 0 remainder
            else if (rem == 0) {
                // Then there must be even occurrences of
                // such remainder
                if (hm.get(rem) % 2 == 1)
                    return false;
            }
  
            // Else number of occurrences of remainder
            // must be equal to number of occurrences of
            // k - remainder
            else {
                if (hm.get(k - rem) != hm.get(rem))
                    return false;
            }
        }
        return true;
    }
  
 
// Driver program
 
      let arr = [ 92, 75, 65, 48, 45, 35 ];
      let k = 10;
  
      // Function call
      let ans = canPairs(arr, k);
      if (ans)
          document.write("True");
      else
          document.write("False");
       
</script>

                    

Output
True



Time complexity: O(n).
Auxiliary Space: O(n)

MOST OPTIMIZED SOLUTION:

Algorithm:

  1. In this approach we focus on the fact that if sum of two numbers mod K gives the output 0,then it is true for all instances that the individual number mod K would sum up to the K.
  2. We make an array of size K and there we increase the frequency and reduces it, if found a match and in the end if array has no element greater than 0 then it returns true else return false.

C++

#include <bits/stdc++.h>
using namespace std;
 
// Function to check if an array can be divided into pairs whose sum is divisible by k
bool canPairs(vector<int> nums, int k) {
    // If the size of the array is odd, return false
    if (nums.size() % 2 != 0)
        return false;
 
    // Create a frequency array of size k
    vector<int> freq(k);
    for (int i : nums) {
        int y = i % k;
        // If the complement of the current element's remainder exists in the frequency array, decrement its count
        if (freq[(k - y) % k] != 0)
            freq[(k - y) % k]--;
        // Otherwise, increment the count of the current element's remainder
        else
            freq[y]++;
    }
    // Check if all elements in the frequency array are 0
    for (int i : freq) {
        if (i != 0)
            return false;
    }
    return true;
}
 
int main() {
    vector<int> arr = {92, 75, 65, 48, 45, 35};
    int k = 10;
 
    // Function call
    if (canPairs(arr,k)) {
        cout << "True";
    } else {
        cout << "False";
    }
}

                    

Java

// Java program to check Array Pair Sum Divisibility
 
import java.io.*;
import java.util.*;
 
class GFG {
    public static boolean canPairs(int[] nums, int k)
    {
        // Code here
        if (nums.length % 2 != 0)
            return false;
 
        int freq[] = new int[k];
        for (int i : nums) {
            int y = i % k;
            if (freq[(k - y) % k] != 0)
                freq[(k - y) % k]--;
            else
                freq[y]++;
        }
        for (int i : freq) {
            if (i != 0)
                return false;
        }
        return true;
    }
    public static void main(String[] args)
    {
        int arr[] = { 92, 75, 65, 48, 45, 35 };
        int k = 10;
 
        // Function call
        if (canPairs(arr,k)) {
            System.out.println("True");
        }
        else {
            System.out.println("False");
        }
    }
}
// This code is contributed by Raunak Singh

                    

Python3

# Function to check if a list can be divided into pairs whose sum is divisible by k
def canPairs(nums, k):
    # If the size of the list is odd, return False
    if len(nums) % 2 != 0:
        return False
 
    # Create a frequency list of size k
    freq = [0] * k
 
    for i in nums:
        y = i % k
        # If the complement of the current element's remainder exists in the frequency list, decrement its count
        if freq[(k - y) % k] != 0:
            freq[(k - y) % k] -= 1
        # Otherwise, increment the count of the current element's remainder
        else:
            freq[y] += 1
 
    # Check if all elements in the frequency list are 0
    for i in freq:
        if i != 0:
            return False
 
    return True
 
# Driver code
arr = [92, 75, 65, 48, 45, 35]
k = 10
 
# Function call
if canPairs(arr, k):
    print("True")
else:
    print("False")

                    

C#

// Include namespace system
using System;
using System.Linq;
using System.Collections;
 
public class GFG {
    public static bool canPairs(int[] nums, int n, int k)
    {
        if (nums.length % 2 != 0)
            return false;
 
        int freq[] = new int[k];
        for (int i = 0; i < nums.length; i++) {
            int y = nums[i] % k;
            if (freq[(k - y) % k] != 0)
                freq[(k - y) % k]--;
            else
                freq[y]++;
        }
        for (int i = 0; i < freq.length; i++) {
            if (freq[i] != 0)
                return false;
        }
        return true;
    }
    public static void Main(String[] args)
    {
        int[] arr = { 92, 75, 65, 48, 45, 35 };
        var k = 10;
        var n = arr.Length;
        // Function call
        if (GFG.canPairs(arr, n, k)) {
            Console.WriteLine("True");
        }
        else {
            Console.WriteLine("False");
        }
    }
}
// This code is contributed by Raunak Singh

                    

Javascript

// Function to check if an array can be divided into pairs whose sum is divisible by k
function canPairs(nums, k) {
    // If the size of the array is odd, return false
    if (nums.length % 2 !== 0)
        return false;
 
    // Create a frequency array of size k
    let freq = new Array(k).fill(0);
    for (let i of nums) {
        let y = i % k;
        // If the complement of the current element's remainder exists in the frequency array, decrement its count
        if (freq[(k - y) % k] !== 0)
            freq[(k - y) % k]--;
        // Otherwise, increment the count of the current element's remainder
        else
            freq[y]++;
    }
    // Check if all elements in the frequency array are 0
    for (let i of freq) {
        if (i !== 0)
            return false;
    }
    return true;
}
 
// Driver code
let arr = [92, 75, 65, 48, 45, 35];
let k = 10;
 
// Function call
if (canPairs(arr, k)) {
    console.log("True");
} else {
    console.log("False");
}

                    

Output
True



  • Time complexity: O(n),since every element is traversed for one time.
  • Auxiliary Space: O(k),since array size will be k because it wont exceed k because we doing result mod k.



Last Updated : 05 Oct, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads
Complete Tutorials