Check if all levels of two trees are anagrams or not

Given two binary trees, we have to check if each of their levels are anagrams of each other or not.

Example:

Tree 1:
Level 0 : 1
Level 1 : 3, 2
Level 2 : 5, 4

Tree 2:
Level 0 : 1
Level 1 : 2, 3
Level 2 : 4, 5

As we can clearly see all the levels of above two binary trees are anagrams of each other, hence return true.



Naive Approach: Below is the step by step explanation of the naive approach to do this:

  1. Write a recursive program for level order traversal of a tree.
  2. Traverse each level of both the trees one by one and store the result of traversals in 2 different vectors, one for each tree.
  3. Sort both the vectors and compare them iteratively for each level, if they are same for each level then return true else return false.

Time Complexity: O(n^2), where n is the number of nodes.

Efficient Approach:
The idea is based on below article.
Print level order traversal line by line | Set 1
We traverse both trees simultaneously level by level. We store each level both trees in vectors (or array). To check if two vectors are anagram or not, we sort both and then compare.

Time Complexity: O(n), where n is the number of nodes.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Iterative program to check if two trees are level
   by level anagram. */
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node
{
    struct Node *left, *right;
    int data;
};
  
// Returns true if trees with root1 and root2
// are level by level anagram, else returns false.
bool areAnagrams(Node *root1, Node *root2)
{
    // Base Cases
    if (root1 == NULL && root2 == NULL)
        return true;
    if (root1 == NULL || root2 == NULL)
        return false;
  
    // start level order traversal of two trees
    // using two queues.
    queue<Node *> q1, q2;
    q1.push(root1);
    q2.push(root2);
  
    while (1)
    {
        // n1 (queue size) indicates number of Nodes
        // at current level in first tree and n2 indicates
        // number of nodes in current level of second tree.
        int n1 = q1.size(), n2 = q2.size();
  
        // If n1 and n2 are different 
        if (n1 != n2)
            return false;
  
        // If level order traversal is over  
        if (n1 == 0)
            break;
  
        // Dequeue all Nodes of current level and
        // Enqueue all Nodes of next level
        vector<int> curr_level1, curr_level2;
        while (n1 > 0)
        {
            Node *node1 = q1.front();
            q1.pop();
            if (node1->left != NULL)
                q1.push(node1->left);
            if (node1->right != NULL)
                q1.push(node1->right);
            n1--;
  
            Node *node2 = q2.front();
            q2.pop();
            if (node2->left != NULL)
                q2.push(node2->left);
            if (node2->right != NULL)
                q2.push(node2->right);
  
            curr_level1.push_back(node1->data);
            curr_level2.push_back(node2->data);
        }
  
        // Check if nodes of current levels are 
        // anagrams or not.
        sort(curr_level1.begin(), curr_level1.end());
        sort(curr_level2.begin(), curr_level2.end());
        if (curr_level1 != curr_level2)
            return false;
    }
  
    return true;
}
  
// Utility function to create a new tree Node
Node* newNode(int data)
{
    Node *temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Driver program to test above functions
int main()
{
    // Constructing both the trees.
    struct Node* root1 = newNode(1);
    root1->left = newNode(3);
    root1->right = newNode(2);
    root1->right->left = newNode(5);
    root1->right->right = newNode(4);
  
    struct Node* root2 = newNode(1);
    root2->left = newNode(2);
    root2->right = newNode(3);
    root2->left->left = newNode(4);
    root2->left->right = newNode(5);
  
    areAnagrams(root1, root2)? cout << "Yes" : cout << "No";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Iterative program to check if two trees
are level by level anagram. */
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.Queue;
  
  
public class GFG 
{                                 
    // A Binary Tree Node
    static class Node
    {
        Node left, right;
        int data;
        Node(int data){
            this.data = data;
            left = null;
            right = null;
        }
    }
       
    // Returns true if trees with root1 and root2
    // are level by level anagram, else returns false.
    static boolean areAnagrams(Node root1, Node root2)
    {
        // Base Cases
        if (root1 == null && root2 == null)
            return true;
        if (root1 == null || root2 == null)
            return false;
       
        // start level order traversal of two trees
        // using two queues.
        Queue<Node> q1 = new LinkedList<Node>();
        Queue<Node> q2 = new LinkedList<Node>();
        q1.add(root1);
        q2.add(root2);
       
        while (true)
        {
            // n1 (queue size) indicates number of 
            // Nodes at current level in first tree
            // and n2 indicates number of nodes in
            // current level of second tree.
            int n1 = q1.size(), n2 = q2.size();
       
            // If n1 and n2 are different 
            if (n1 != n2)
                return false;
       
            // If level order traversal is over  
            if (n1 == 0)
                break;
       
            // Dequeue all Nodes of current level and
            // Enqueue all Nodes of next level
            ArrayList<Integer> curr_level1 = new 
                                          ArrayList<>();
            ArrayList<Integer> curr_level2 = new 
                                          ArrayList<>();
            while (n1 > 0)
            {
                Node node1 = q1.peek();
                q1.remove();
                if (node1.left != null)
                    q1.add(node1.left);
                if (node1.right != null)
                    q1.add(node1.right);
                n1--;
       
                Node node2 = q2.peek();
                q2.remove();
                if (node2.left != null)
                    q2.add(node2.left);
                if (node2.right != null)
                    q2.add(node2.right);
       
                curr_level1.add(node1.data);
                curr_level2.add(node2.data);
            }
       
            // Check if nodes of current levels are 
            // anagrams or not.
            Collections.sort(curr_level1);
            Collections.sort(curr_level2);
              
            if (!curr_level1.equals(curr_level2))
                return false;
        }
       
        return true;
    }
      
    // Driver program to test above functions
    public static void main(String args[])
    {
        // Constructing both the trees.
        Node root1 = new Node(1);
        root1.left = new Node(3);
        root1.right = new Node(2);
        root1.right.left = new Node(5);
        root1.right.right = new Node(4);
       
        Node root2 = new Node(1);
        root2.left = new Node(2);
        root2.right = new Node(3);
        root2.left.left = new Node(4);
        root2.left.right = new Node(5);
       
          
        System.out.println(areAnagrams(root1, root2)?
                             "Yes" : "No");
    }
}
// This code is contributed by Sumit Ghosh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Iterative program to check if two 
# trees are level by level anagram
  
# A Binary Tree Node
# Utility function to create a
# new tree Node 
class newNode: 
    def __init__(self, data): 
        self.data = data 
        self.left = self.right = None
          
# Returns true if trees with root1
# and root2 are level by level 
# anagram, else returns false. 
def areAnagrams(root1, root2) :
  
    # Base Cases 
    if (root1 == None and root2 == None) :
        return True
    if (root1 == None or root2 == None) :
        return False
  
    # start level order traversal of 
    # two trees using two queues. 
    q1 = []
    q2 = [] 
    q1.append(root1) 
    q2.append(root2) 
  
    while (1) :
      
        # n1 (queue size) indicates number 
        # of Nodes at current level in first
        # tree and n2 indicates number of nodes
        # in current level of second tree. 
        n1 = len(q1)
        n2 = len(q2)
  
        # If n1 and n2 are different 
        if (n1 != n2):
            return False
  
        # If level order traversal is over 
        if (n1 == 0): 
            break
  
        # Dequeue all Nodes of current level 
        # and Enqueue all Nodes of next level
        curr_level1 = []
        curr_level2 = []
        while (n1 > 0): 
            node1 = q1[0
            q1.pop(0
            if (node1.left != None) :
                q1.append(node1.left) 
            if (node1.right != None) :
                q1.append(node1.right) 
            n1 -= 1
  
            node2 = q2[0
            q2.pop(0
            if (node2.left != None) :
                q2.append(node2.left) 
            if (node2.right != None) :
                q2.append(node2.right) 
  
            curr_level1.append(node1.data) 
            curr_level2.append(node2.data) 
              
        # Check if nodes of current levels 
        # are anagrams or not. 
        curr_level1.sort() 
        curr_level2.sort() 
        if (curr_level1 != curr_level2) :
            return False
      
    return True
  
# Driver Code 
if __name__ == '__main__':
      
    # Constructing both the trees. 
    root1 = newNode(1
    root1.left = newNode(3
    root1.right = newNode(2
    root1.right.left = newNode(5
    root1.right.right = newNode(4
  
    root2 = newNode(1
    root2.left = newNode(2
    root2.right = newNode(3
    root2.left.left = newNode(4
    root2.left.right = newNode(5
    if areAnagrams(root1, root2):
        print("Yes")  
    else
        print("No")
  
# This code is contributed 
# by SHUBHAMSINGH10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Iterative program to check if two trees 
are level by level anagram. */
using System;
using System.Collections.Generic;
  
class GFG 
{                             
    // A Binary Tree Node 
    public class Node 
    
        public Node left, right; 
        public int data; 
        public Node(int data)
        
            this.data = data; 
            left = null
            right = null
        
    
      
    // Returns true if trees with root1 
    // and root2 are level by level anagram, 
    // else returns false. 
    static Boolean areAnagrams(Node root1, 
                               Node root2) 
    
        // Base Cases 
        if (root1 == null && root2 == null
            return true
        if (root1 == null || root2 == null
            return false
      
        // start level order traversal of two trees 
        // using two queues. 
        Queue<Node> q1 = new Queue<Node>(); 
        Queue<Node> q2 = new Queue<Node>(); 
        q1.Enqueue(root1); 
        q2.Enqueue(root2); 
      
        while (true
        
            // n1 (queue size) indicates number of 
            // Nodes at current level in first tree 
            // and n2 indicates number of nodes in 
            // current level of second tree. 
            int n1 = q1.Count, n2 = q2.Count; 
      
            // If n1 and n2 are different 
            if (n1 != n2) 
                return false
      
            // If level order traversal is over 
            if (n1 == 0) 
                break
      
            // Dequeue all Nodes of current level and 
            // Enqueue all Nodes of next level 
            List<int> curr_level1 = new List<int>(); 
            List<int> curr_level2 = new List<int>(); 
            while (n1 > 0) 
            
                Node node1 = q1.Peek(); 
                q1.Dequeue(); 
                if (node1.left != null
                    q1.Enqueue(node1.left); 
                if (node1.right != null
                    q1.Enqueue(node1.right); 
                n1--; 
      
                Node node2 = q2.Peek(); 
                q2.Dequeue(); 
                if (node2.left != null
                    q2.Enqueue(node2.left); 
                if (node2.right != null
                    q2.Enqueue(node2.right); 
      
                curr_level1.Add(node1.data); 
                curr_level2.Add(node2.data); 
            
      
            // Check if nodes of current levels are 
            // anagrams or not. 
            curr_level1.Sort(); 
            curr_level2.Sort(); 
              
            for(int i = 0;
                    i < curr_level1.Count; i++)
            if(curr_level1[i] != curr_level2[i])
                return false
        
        return true
    
      
    // Driver Code
    public static void Main(String []args) 
    
        // Constructing both the trees. 
        Node root1 = new Node(1); 
        root1.left = new Node(3); 
        root1.right = new Node(2); 
        root1.right.left = new Node(5); 
        root1.right.right = new Node(4); 
      
        Node root2 = new Node(1); 
        root2.left = new Node(2); 
        root2.right = new Node(3); 
        root2.left.left = new Node(4); 
        root2.left.right = new Node(5); 
      
          
        Console.WriteLine(areAnagrams(root1, 
                                      root2) ?
                                       "Yes" : "No"); 
    
  
// This code is contributed by Arnab Kundu

chevron_right



Output:

Yes

Note: In the above program we are comparing the vectors storing each level of a tree directly using not equal to function ‘ != ‘ which compares the vectors first on the basis of their size and then on the basis of their content, hence saving our work of iteratively comparing the vectors.

This article is contributed by Aditya Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : SHUBHAMSINGH10, andrew1234