Given a binary string, the task is to find whether all the digits of the string can be made equal i.e either 0 or 1 by flipping two consecutive bits any number of times.
Examples:
Input: 01011 Output: YES Explanation: Flip 2nd and 3rd bit -> 00111, again flipping 1'st and 2'nd bit -> 11111 Input: 100011 Output: NO Explanation: No number of moves can ever equalize all elements of the array.
Approach:
On careful observation, toggling of i’th and j’th bit can be done by toggling from i’th bit like (i, i+1), (i+1, i+2) …. (j-1, j) here every bit is toggling twice (if bit is toggle twice then its come to its initial value) except i and j then ultimately i’th and j’th bits toggle. Therefore, it can be said that it is only not possible to make all digits in binary string equal when the count of both 1 and 0 is odd.
Below is the implementation of the above approach:
// C++ program for the // above approach #include <bits/stdc++.h> using namespace std;
// Function to check if // Binary string can be // made equal string canMake(string& s) { int o = 0, z = 0;
// Counting occurence of
// zero and one in binary
// string
for ( int i = 0; i < s.size(); i++) {
if (s[i] - '0' == 1)
o++;
else
z++;
}
// From above observation
if (o % 2 == 1 && z % 2 == 1)
return "NO" ;
else
return "YES" ;
} // Driver code int main()
{ string s = "01011" ;
cout << canMake(s) << '\n' ;
return 0;
} |
// Java program for the above approach class GFG
{ // Function to check if
// Binary string can be
// made equal
static String canMake(String s)
{
int o = 0 , z = 0 ;
// Counting occurence of
// zero and one in binary
// string
for ( int i = 0 ; i < s.length(); i++)
{
if (s.charAt(i) - '0' == 1 )
o++;
else
z++;
}
// From above observation
if (o % 2 == 1 && z % 2 == 1 )
return "NO" ;
else
return "YES" ;
}
// Driver code
public static void main (String[] args)
{
String s = "01011" ;
System.out.println(canMake(s)) ;
}
} // This code is contributed by AnkitRai01 |
# Python3 program for the above approach # Function to check if # Binary string can be # made equal def canMake(s) :
o = 0 ; z = 0 ;
# Counting occurence of
# zero and one in binary
# string
for i in range ( len (s)) :
if ( ord (s[i]) - ord ( '0' ) = = 1 ) :
o + = 1 ;
else :
z + = 1 ;
# From above observation
if (o % 2 = = 1 and z % 2 = = 1 ) :
return "NO" ;
else :
return "YES" ;
# Driver code if __name__ = = "__main__" :
s = "01011" ;
print (canMake(s));
# This code is contributed by AnkitRai01 |
// C# program for the above approach using System;
class GFG
{ // Function to check if
// Binary string can be
// made equal
static string canMake( string s)
{
int o = 0, z = 0;
// Counting occurence of
// zero and one in binary
// string
for ( int i = 0; i < s.Length; i++)
{
if (s[i] - '0' == 1)
o++;
else
z++;
}
// From above observation
if (o % 2 == 1 && z % 2 == 1)
return "NO" ;
else
return "YES" ;
}
// Driver code
public static void Main()
{
string s = "01011" ;
Console.WriteLine(canMake(s)) ;
}
} // This code is contributed by AnkitRai01 |
YES
Time Complexity: O(n), where n is the length of the given Binary number
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.