Open In App
Related Articles

Check if all bits can be made same by flipping two consecutive bits

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a binary string, the task is to find whether all the digits of the string can be made equal i.e either 0 or 1 by flipping two consecutive bits any number of times.
Examples: 
 

Input: 01011
Output: YES
Explanation:
Flip 2nd and 3rd bit -> 00111, 
again flipping 1’st and 2’nd bit -> 11111

Input: 100011
Output: NO
Explanation:
No number of moves can ever 
equalize all elements of the array.

 

Approach: 
On careful observation, toggling of i’th and j’th bit can be done by toggling from i’th bit like (i, i+1), (i+1, i+2) …. (j-1, j) here every bit is toggling twice (if bit is toggle twice then its come to its initial value) except i and j then ultimately i’th and j’th bits toggle. Therefore, it can be said that it is only not possible to make all digits in binary string equal when the count of both 1 and 0 is odd.
Below is the implementation of the above approach: 
 

C++




// C++ program for the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if
// Binary string can be
// made equal
string canMake(string& s)
{
 
    int o = 0, z = 0;
 
    // Counting occurrence of
    // zero and one in binary
    // string
    for (int i = 0; i < s.size(); i++) {
        if (s[i] - '0' == 1)
            o++;
        else
            z++;
    }
 
    // From above observation
    if (o % 2 == 1 && z % 2 == 1)
        return "NO";
    else
        return "YES";
}
 
// Driver code
int main()
{
 
    string s = "01011";
    cout << canMake(s) << '\n';
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
public class GFG
{
     
    // Function to check if
    // Binary string can be
    // made equal
    static String canMake(String s)
    {
     
        int o = 0, z = 0;
     
        // Counting occurrence of
        // zero and one in binary
        // string
        for (int i = 0; i < s.length(); i++)
        {
            if (s.charAt(i) - '0' == 1)
                o++;
            else
                z++;
        }
     
        // From above observation
        if (o % 2 == 1 && z % 2 == 1)
            return "NO";
        else
            return "YES";
    }
     
    // Driver code
    public static void main (String[] args)
    {
     
        String s = "01011";
        System.out.println(canMake(s)) ;
         
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 program for the above approach
 
# Function to check if
# Binary string can be
# made equal
def canMake(s) :
 
    o = 0; z = 0;
 
    # Counting occurrence of
    # zero and one in binary
    # string
    for i in range(len(s)) :
        if (ord(s[i]) - ord('0') == 1) :
            o += 1;
        else :
            z += 1;
 
    # From above observation
    if (o % 2 == 1 and z % 2 == 1) :
        return "NO";
    else :
        return "YES";
 
# Driver code
if __name__ == "__main__" :
 
    s = "01011";
    print(canMake(s));
 
# This code is contributed by AnkitRai01


C#




// C# program for the above approach
using System;
 
class GFG
{
     
    // Function to check if
    // Binary string can be
    // made equal
    static string canMake(string s)
    {
     
        int o = 0, z = 0;
     
        // Counting occurrence of
        // zero and one in binary
        // string
        for (int i = 0; i < s.Length; i++)
        {
            if (s[i] - '0' == 1)
                o++;
            else
                z++;
        }
     
        // From above observation
        if (o % 2 == 1 && z % 2 == 1)
            return "NO";
        else
            return "YES";
    }
     
    // Driver code
    public static void Main()
    {
        string s = "01011";
        Console.WriteLine(canMake(s)) ;
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// javascript program for the above approach
 
// Function to check if
// Binary string can be
// made equal
function canMake(s)
{
 
    var o = 0, z = 0;
 
    // Counting occurrence of
    // zero and one in binary
    // string
    for (i = 0; i < s.length; i++)
    {
        if (s.charAt(i).charCodeAt(0) - '0'.charCodeAt(0) == 1)
            o++;
        else
            z++;
    }
 
    // From above observation
    if (o % 2 == 1 && z % 2 == 1)
        return "NO";
    else
        return "YES";
}
 
// Driver code
var s = "01011";
document.write(canMake(s)) ;
 
// This code is contributed by Rajput-Ji
 
</script>


PHP




<?php
// Function to check if
// Binary string can be
// made equal
function canMake($s) {
    $o = 0;
    $z = 0;
 
    // Counting occurrence of
    // zero and one in binary
    // string
    for ($i = 0; $i < strlen($s); $i++) {
        if ($s[$i] - '0' == 1) {
            $o++;
        } else {
            $z++;
        }
    }
 
    // From above observation
    if ($o % 2 == 1 && $z % 2 == 1) {
        return "NO";
    } else {
        return "YES";
    }
}
 
// Driver code
$s = "01011";
echo canMake($s) . "\n";
?>


Output: 

YES

 

Time Complexity: O(n), where n is the length of the given Binary number
Auxiliary space: O(1) since it is using constant space for variables


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 29 Apr, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials