Check if a string is a scrambled form of another string

Given two strings S1 and S2 of equal length, the task is to determine if S2 is a scrambled form of S1.

Scrambled string: 
Given string str, we can represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Note: Srambled string is not same as an Anagram

Below is one possible representation of str = “coder”:

    coder
   /    \
  co    der
 / \    /  \
c   o  d   er
           / \
          e   r

To scramble the string, we may choose any non-leaf node and swap its two children. 
Suppose, we choose the node “co” and swap its two children, it produces a scrambled string “ocder”.
 



    ocder
   /    \
  oc    der
 / \    /  \
o   c  d   er
           / \
          e   r

Thus, “ocder” is a scrambled string of “coder”.
Similarly, if we continue to swap the children of nodes “der” and “er”, it produces a scrambled string “ocred”.
 

    ocred
   /    \
  oc    red
 / \    /  \
o   c  re  d
       / \
      r   e

Thus, “ocred” is a scrambled string of “coder”.
Examples:

Input: S1=”coder”, S2=”ocder” 
Output: Yes 
Explanation: 
“ocder” is a scrambled form of “coder”

Input: S1=”abcde”, S2=”caebd” 
Output: No 
Explanation: 
“caebd” is not a scrambled form of “abcde”

Approach 
In order to solve this problem, we are using Divide and Conquer approach. 
Given two strings of equal length (say n+1), S1[0…n] and S2[0…n]. If S2 is a scrambled form of S1, then there must exist an index i such that at least one of the following conditions is true: 

  • S2[0…i] is a scrambled string of S1[0…i] and S2[i+1…n] is a scrambled string of S1[i+1…n].
  • S2[0…i] is a scrambled string of S1[n-i…n] and S2[i+1…n] is a scrambled string of S1[0…n-i-1].

Note: An optimization step to consider here is to check beforehand if the two strings are anagrams of each other. If not, it indicates that the strings contain different characters and can’t be a scrambled form of each other.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to check if a
// given string is a scrambled
// form of another string
  
#include <bits/stdc++.h>
using namespace std;
  
bool isScramble(string S1, string S2)
{
    // Strings of non-equal length
    // cant' be scramble strings
    if (S1.length() != S2.length()) {
        return false;
    }
  
    int n = S1.length();
  
    // Empty strings are scramble strings
    if (n == 0) {
        return true;
    }
  
    // Equal strings are scramble strings
    if (S1 == S2) {
        return true;
    }
  
    // Check for the condition of anagram
    string copy_S1 = S1, copy_S2 = S2;
  
    sort(copy_S1.begin(), copy_S1.end());
    sort(copy_S2.begin(), copy_S2.end());
  
    if (copy_S1 != copy_S2) {
        return false;
    }
  
    for (int i = 1; i < n; i++) {
  
        // Check if S2[0...i] is a scrambled
        // string of S1[0...i] and if S2[i+1...n]
        // is a scrambled string of S1[i+1...n]
        if (isScramble(S1.substr(0, i), S2.substr(0, i))
            && isScramble(S1.substr(i, n - i),
                          S2.substr(i, n - i))) {
            return true;
        }
  
        // Check if S2[0...i] is a scrambled
        // string of S1[n-i...n] and S2[i+1...n]
        // is a scramble string of S1[0...n-i-1]
        if (isScramble(S1.substr(0, i),
                       S2.substr(n - i, i))
            && isScramble(S1.substr(i, n - i),
                          S2.substr(0, n - i))) {
            return true;
        }
    }
  
    // If none of the above
    // conditions are satisfied
    return false;
}
  
// Driver Code
int main()
{
    string S1 = "coder";
    string S2 = "ocred";
  
    if (isScramble(S1, S2)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if a
// given string is a scrambled
// form of another string
import java.util.*;
  
class GFG{
      
static boolean isScramble(String S1,
                          String S2)
{
      
    // Strings of non-equal length
    // cant' be scramble strings
    if (S1.length() != S2.length()) 
    {
        return false;
    }
      
    int n = S1.length();
  
    // Empty strings are scramble strings
    if (n == 0
    {
        return true;
    }
      
    // Equal strings are scramble strings
    if (S1.equals(S2))
    {
        return true;
    }
      
    // Converting string to 
    // character array
    char[] tempArray1 = S1.toCharArray();
    char[] tempArray2 = S2.toCharArray();
      
    // Checking condition for Anagram
    Arrays.sort(tempArray1);
    Arrays.sort(tempArray2);
      
    String copy_S1 = new String(tempArray1);
    String copy_S2 = new String(tempArray2);
      
    if (!copy_S1.equals(copy_S2)) 
    {
        return false;
    }
          
    for(int i = 1; i < n; i++)
    {
          
        // Check if S2[0...i] is a scrambled
        // string of S1[0...i] and if S2[i+1...n]
        // is a scrambled string of S1[i+1...n]
        if (isScramble(S1.substring(0, i), 
                       S2.substring(0, i)) && 
            isScramble(S1.substring(i, n),
                       S2.substring(i, n)))
        {
            return true;
        }
  
        // Check if S2[0...i] is a scrambled
        // string of S1[n-i...n] and S2[i+1...n]
        // is a scramble string of S1[0...n-i-1]
        if (isScramble(S1.substring(n - i, n),
                       S2.substring(0, i)) && 
            isScramble(S1.substring(0, n - i),
                       S2.substring(i, n))) 
        {
            return true;
        }
    }
      
    // If none of the above
    // conditions are satisfied
    return false;
}
  
// Driver Code
public static void main(String[] args)
{
    String S1 = "coder";
    String S2 = "ocred";
      
    if (isScramble(S1, S2)) 
    {
        System.out.println("Yes");
    }
    else 
    {
        System.out.println("No");
    }
}
}
  
// This code is contributed by dadi madhav

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if a
# given string is a scrambled
# form of another string
def isScramble(S1: str, S2: str):
      
    # Strings of non-equal length
    # cant' be scramble strings
    if len(S1) != len(S2):
        return False
  
    n = len(S1)
  
    # Empty strings are scramble strings
    if not n:
        return True
  
    # Equal strings are scramble strings
    if S1 == S2:
        return True
  
    # Check for the condition of anagram
    if sorted(S1) != sorted(S2):
        return False
  
    for i in range(1, n):
          
        # Check if S2[0...i] is a scrambled
        # string of S1[0...i] and if S2[i+1...n]
        # is a scrambled string of S1[i+1...n]
        if (isScramble(S1[:i], S2[:i]) and 
            isScramble(S1[i:], S2[i:])):
            return True
  
        # Check if S2[0...i] is a scrambled
        # string of S1[n-i...n] and S2[i+1...n]
        # is a scramble string of S1[0...n-i-1]
        if (isScramble(S1[-i:], S2[:i]) and 
            isScramble(S1[:-i], S2[i:])):
            return True
  
    # If none of the above
    # conditions are satisfied
    return False
  
# Driver Code
if __name__ == "__main__":
      
    S1 = "coder"
    S2 = "ocred"
      
    if (isScramble(S1, S2)):
        print("Yes")
    else:
        print("No")
  
# This code is contributed by sgshah2

chevron_right


Output: 

Yes

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.