Check if a right-angled triangle can be formed by the given coordinates

Given three Cartesian coordinates, the task is to check if a right-angled triangle can be formed by the given coordinates. If it is possible to create a right-angled triangle, print Yes. Otherwise, print No.
Examples: 
 

Input: X1=0, Y1=5, X2=19, Y2=5, X3=0, Y3=0 
Output: Yes 
Explanation: 
Length of side connecting points (X1, Y1) and (X2, Y2) is 12. 
Length of side connecting points (X2, Y2) and (X3, Y3) is 15. 
Length of side connecting points (X1, Y1) and (X3, Y3) is 9. 
122 + 92 = 152
Therefore, a right-angled triangle can be made.

Input: X1=5, Y1=14, X2=6, Y2=13, X3=8, Y3=7 
Output: No 
 

 

Approach: 
The idea is to use the Pythagoras Theorem to check if a right-angled triangle is possible or not. Calculate the length of the three sides of the triangle by joining the given coordinates. Let the sides be A, B, and C. The given triangle is right-angled if and only if A2 + B2 = C2. Print Yes if the condition holds true. Otherwise, print No.

Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if right-angled
// triangle can be formed by the
// given coordinates
void checkRightAngled(int X1, int Y1,
                      int X2, int Y2,
                      int X3, int Y3)
{
    // Calculate the sides
    int A = (int)pow((X2 - X1), 2)
            + (int)pow((Y2 - Y1), 2);
  
    int B = (int)pow((X3 - X2), 2)
            + (int)pow((Y3 - Y2), 2);
  
    int C = (int)pow((X3 - X1), 2)
            + (int)pow((Y3 - Y1), 2);
  
    // Check Pythagoras Formula
    if ((A > 0 and B > 0 and C > 0)
        and (A == (B + C) or B == (A + C)
             or C == (A + B)))
        cout << "Yes";
  
    else
        cout << "No";
}
  
// Driver Code
int main()
{
    int X1 = 0, Y1 = 2;
    int X2 = 0, Y2 = 14;
    int X3 = 9, Y3 = 2;
  
    checkRightAngled(X1, Y1, X2,
                     Y2, X3, Y3);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach 
import java.util.*;
  
class GFG{
      
// Function to check if right-angled
// triangle can be formed by the
// given coordinates
static void checkRightAngled(int X1, int Y1,
                             int X2, int Y2,
                             int X3, int Y3)
{
      
    // Calculate the sides
    int A = (int)Math.pow((X2 - X1), 2) +
            (int)Math.pow((Y2 - Y1), 2);
  
    int B = (int)Math.pow((X3 - X2), 2) +
            (int)Math.pow((Y3 - Y2), 2);
  
    int C = (int)Math.pow((X3 - X1), 2) +
            (int)Math.pow((Y3 - Y1), 2);
  
    // Check Pythagoras Formula
    if ((A > 0 && B > 0 && C > 0) && 
        (A == (B + C) || B == (A + C) ||
         C == (A + B)))
        System.out.println("Yes");
    else
        System.out.println("No");
}
  
// Driver Code
public static void main(String s[])
{
    int X1 = 0, Y1 = 2;
    int X2 = 0, Y2 = 14;
    int X3 = 9, Y3 = 2;
      
    checkRightAngled(X1, Y1, X2, Y2, X3, Y3);
}
  
// This code is contributed by rutvik_56

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the
# above approach
  
# Function to check if right-angled 
# triangle can be formed by the 
# given coordinates 
def checkRightAngled(X1, Y1, X2, 
                     Y2, X3, Y3):
      
    # Calculate the sides
    A = (int(pow((X2 - X1), 2)) +
         int(pow((Y2 - Y1), 2)))
    B = (int(pow((X3 - X2), 2)) +
         int(pow((Y3 - Y2), 2)))
    C = (int(pow((X3 - X1), 2)) + 
         int(pow((Y3 - Y1), 2)))
      
    # Check Pythagoras Formula 
    if ((A > 0 and B > 0 and C > 0) and
        (A == (B + C) or B == (A + C) or
         C == (A + B))):
        print("Yes")
    else:
        print("No")
  
# Driver code
if __name__=='__main__':
      
    X1 = 0; X2 = 0; X3 = 9;
    Y1 = 2; Y2 = 14; Y3 = 2;
      
    checkRightAngled(X1, Y1, X2, 
                     Y2, X3, Y3)
      
# This code is contributed by virusbuddah_

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System;
  
class GFG{
      
// Function to check if right-angled
// triangle can be formed by the
// given coordinates
static void checkRightAngled(int X1, int Y1,
                             int X2, int Y2,
                             int X3, int Y3)
{
      
    // Calculate the sides
    int A = (int)Math.Pow((X2 - X1), 2) +
            (int)Math.Pow((Y2 - Y1), 2);
  
    int B = (int)Math.Pow((X3 - X2), 2) +
            (int)Math.Pow((Y3 - Y2), 2);
  
    int C = (int)Math.Pow((X3 - X1), 2) +
            (int)Math.Pow((Y3 - Y1), 2);
  
    // Check Pythagoras Formula
    if ((A > 0 && B > 0 && C > 0) && 
        (A == (B + C) || B == (A + C) ||
         C == (A + B)))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
  
// Driver Code
public static void Main(String []s)
{
    int X1 = 0, Y1 = 2;
    int X2 = 0, Y2 = 14;
    int X3 = 9, Y3 = 2;
      
    checkRightAngled(X1, Y1, X2, Y2, X3, Y3);
}
  
// This code is contributed by Rohit_ranjan

chevron_right


Output: 

Yes

Time Complexity: O(logN) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.