Given two integers A and B, the task is to check if there exists two integers P and Q over the range [1, A] and [1, B] respectively such that Bitwise XOR of P and Q is greater than A and B. If found to be true, then print “Yes”. Otherwise, print “No”.
Examples:
Input: X = 2, Y = 2
Output: Yes
Explanation:
By choosing the value of P and Q as 1 and 2 respectively, gives the Bitwise XOR of P and Q as 1^2 = 3 which is greater than Bitwise XOR of A and B A ^ B = 0.
Therefore, print Yes.
Input: X = 2, Y = 4
Output: No
Naive Approach: The simplest approach to solve the given problem is to generate all possible pairs of (P, Q) by traversing all integers from 1 to X and 1 to Y and check if there exists a pair such that their Bitwise XOR is greater than Bitwise XOR of X and Y, then print “Yes”. Otherwise, print “No”.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findWinner( int X, int Y)
{
int playerA = (X ^ Y);
bool flag = false ;
for ( int i = 1; i <= X; i++) {
for ( int j = 1; j <= Y; j++) {
int val = (i ^ j);
if (val > playerA) {
flag = true ;
break ;
}
}
if (flag)
break ;
}
if (flag)
cout << "Yes" ;
else
cout << "No" ;
}
int main()
{
int A = 2, B = 4;
findWinner(A, B);
return 0;
}
|
C
#include <stdio.h>
#include <stdbool.h>
void findWinner( int X, int Y)
{
int playerA = (X ^ Y);
bool flag = false ;
for ( int i = 1; i <= X; i++) {
for ( int j = 1; j <= Y; j++) {
int val = (i ^ j);
if (val > playerA) {
flag = true ;
break ;
}
}
if (flag)
break ;
}
if (flag)
printf ( "Yes" );
else
printf ( "No" );
}
int main()
{
int A = 2, B = 4;
findWinner(A, B);
return 0;
}
|
Java
import java.lang.*;
import java.util.*;
class GFG{
static void findWinner( int X, int Y)
{
int playerA = (X ^ Y);
boolean flag = false ;
for ( int i = 1 ; i <= X; i++)
{
for ( int j = 1 ; j <= Y; j++)
{
int val = (i ^ j);
if (val > playerA)
{
flag = true ;
break ;
}
}
if (flag)
{
break ;
}
}
if (flag)
{
System.out.println( "Yes" );
}
else
{
System.out.println( "No" );
}
}
public static void main(String[] args)
{
int A = 2 , B = 4 ;
findWinner(A, B);
}
}
|
Python3
def findWinner(X, Y):
playerA = (X ^ Y)
flag = False
for i in range ( 1 , X + 1 , 1 ):
for j in range ( 1 , Y + 1 , 1 ):
val = (i ^ j)
if (val > playerA):
flag = True
break
if (flag):
break
if (flag):
print ( "Yes" )
else :
print ( "No" )
if __name__ = = '__main__' :
A = 2
B = 4
findWinner(A, B)
|
C#
using System.Collections.Generic;
using System;
class GFG{
static void findWinner( int X, int Y)
{
int playerA = (X ^ Y);
bool flag = false ;
for ( int i = 1; i <= X; i++)
{
for ( int j = 1; j <= Y; j++)
{
int val = (i ^ j);
if (val > playerA)
{
flag = true ;
break ;
}
}
if (flag)
{
break ;
}
}
if (flag)
{
Console.WriteLine( "Yes" );
}
else
{
Console.WriteLine( "No" );
}
}
public static void Main(String[] args)
{
int A = 2, B = 4;
findWinner(A, B);
}
}
|
Javascript
<script>
function findWinner(X,Y)
{
let playerA = (X ^ Y);
let flag = false ;
for (let i = 1; i <= X; i++)
{
for (let j = 1; j <= Y; j++)
{
let val = (i ^ j);
if (val > playerA)
{
flag = true ;
break ;
}
}
if (flag)
{
break ;
}
}
if (flag)
{
document.write( "Yes<br>" );
}
else
{
document.write( "No<br>" );
}
}
let A = 2, B = 4;
findWinner(A, B);
</script>
|
Time Complexity: O(X * Y)
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized based on the following observations:
- For any two integers P and Q, the maximum Bitwise XOR value is (P + Q) which can only be found when there are no common bits between P and Q in their binary representation.
- There are two cases:
- Case 1: If player A has two integers that produce the maximum Bitwise XOR value, then print “No”.
- Case 2: In this case, there must have some common bit between A and B such that there always exist two integers P and Q whose Bitwise XOR is always greater than the Bitwise XOR of A and B, where (P ^ Q) = (X | Y).
Therefore, from the above observations, the idea is to check if the value of given A^B is equal to A + B or not. If found to be true, then print “No”. Otherwise, print “Yes”.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findWinner( int X, int Y)
{
int first = (X ^ Y);
int second = (X + Y);
if (first == second) {
cout << "No" ;
}
else {
cout << "Yes" ;
}
}
int main()
{
int A = 2, B = 4;
findWinner(A, B);
return 0;
}
|
Java
import java.lang.*;
import java.util.*;
class GFG{
static void findWinner( int X, int Y)
{
int first = (X ^ Y);
int second = (X + Y);
if (first == second)
{
System.out.println( "No" );
}
else
{
System.out.println( "Yes" );
}
}
public static void main(String[] args)
{
int A = 2 , B = 4 ;
findWinner(A, B);
}
}
|
Python3
def findWinner(X, Y):
first = (X ^ Y)
second = (X + Y)
if (first = = second):
print ( "No" )
else :
print ( "Yes" )
if __name__ = = '__main__' :
A, B = 2 , 4
findWinner(A, B)
|
C#
using System;
class GFG{
static void findWinner( int X, int Y)
{
int first = (X ^ Y);
int second = (X + Y);
if (first == second)
{
Console.Write( "No" );
}
else
{
Console.Write( "Yes" );
}
}
public static void Main(String[] args)
{
int A = 2, B = 4;
findWinner(A, B);
}
}
|
Javascript
<script>
function findWinner(X,Y)
{
let first = (X ^ Y);
let second = (X + Y);
if (first == second) {
document.write( "No" );
}
else {
document.write( "Yes" );
}
}
let A = 2, B = 4;
findWinner(A, B);
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
28 Jul, 2022
Like Article
Save Article