Check if a number is Quartan Prime or not

Given a positive integer N, check if it is Quartan prime or not. Print ‘Yes’ if it is a Quartan prime otherwise Print ‘No’.

Quartan Prime : A prime number of the form x4 + y4 where x > 0, y > 0, and x and y are integers is a Quartan Prime.

Quartan Prime in the range 1 – 100 are:



2, 17, 97

Examples:

Input : 17
Output : Yes
Explanation : 17 is a prime number and can be
expressed in the form of:
x4 + y4  as ( 14 + 24 )

Input : 31
Output : No
Explanation: 31 is prime number but can not be
expressed in the form of x4 + y4.

A Simple Solution is to check if the given number is prime or not and then check if it can be expressed in the form of x4 + y4 or not.

An Efficient Solution is based on the fact that every Quartan Prime can also be expressed in the form 16*n + 1. So, we can check if a number is prime or not and can be expressed in the form of 16*n + 1 or not. If yes, Then the number is Quartan Prime otherwise not.

Below is the implementation of the above approach

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check if a number is
// Quartan Prime or not
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if a number
// is prime or not
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (int i = 5; i * i <= n; i = i + 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
    return true;
}
  
// Driver Program
int main()
{
    int n = 17;
  
    // Check if number is prime
    // and of the form 16*n + 1
    if (isPrime(n) && (n % 16 == 1)) {
        cout << "YES";
    }
    else {
        cout << "NO";
    }
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA program to check if a number is
// Quartan Prime or not
  
class GFG {
  
    // Function to check if a number 
    // is prime or not
    static boolean isPrime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
  
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
  
        for (int i = 5; i * i <= n; i = i + 6) {
            if (n % i == 0 || n % (i + 2) == 0) {
                return false;
            }
        }
        return true;
    }
  
    // Driver Program
    public static void main(String[] args)
    {
        int n = 17;
  
        // Check if number is prime
        // and of the form 16*n + 1
        if (isPrime(n) && (n % 16 == 1)) {
            System.out.println("YES");
        }
        else {
            System.out.println("NO");
        }
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to check if a number is 
# Quartan Prime or not
  
# Utility function to check
# if a number is prime or not
def isPrime(n) : 
    # Corner cases 
    if (n <= 1) : 
        return False
    if (n <= 3) : 
        return True
    
    # This is checked so that we can skip  
    # middle five numbers in below loop 
    if (n % 2 == 0 or n % 3 == 0) : 
        return False
    
    i = 5
    while(i * i <= n) : 
        if (n % i == 0 or n % (i + 2) == 0) : 
            return False
        i = i + 6
    
    return True
            
# Driver Code 
n = 17
      
# Check if number is prime 
# and of the form 16 * n + 1
  
if(isPrime(n) and (n % 16 == 1) ):
  
    print("YES")
  
else:
  
    print("NO")
  
            

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if a number 
// is Quartan Prime or not
using System;
  
class GFG 
{
  
// Function to check if a number 
// is prime or not
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we 
    // can skip middle five numbers 
    // in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (int i = 5; i * i <= n; i = i + 6) 
    {
        if (n % i == 0 || n % (i + 2) == 0)
        {
            return false;
        }
    }
    return true;
}
  
// Driver Code
public static void Main()
{
    int n = 17;
  
    // Check if number is prime
    // and of the form 16*n + 1
    if (isPrime(n) && (n % 16 == 1)) 
    {
        Console.WriteLine("YES");
    }
    else 
    {
        Console.WriteLine("NO");
    }
}
}
  
// This code is contributed
// by inder_verma

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if a number 
// is Quartan Prime or not
  
// Function to check if a 
// number is prime or not
function isPrime($n)
{
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return true;
  
    // This is checked so that 
    // we can skip middle five 
    // numbers in below loop
    if ($n % 2 == 0 || $n % 3 == 0)
        return false;
  
    for ($i = 5; $i * $i <= $n
                 $i = $i + 6) 
    {
        if ($n % $i == 0 || 
            $n % ($i + 2) == 0) 
        {
            return false;
        }
    }
    return true;
}
  
// Driver Code
$n = 17;
  
// Check if number is prime
// and of the form 16*n + 1
if (isPrime($n) && ($n % 16 == 1)) 
{
    echo "YES";
}
else 
{
    echo "NO";
}
  
// This code is contributed
// anuj_67
?>

chevron_right


Output:

YES


My Personal Notes arrow_drop_up

self motivated and passionate programmer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : inderDuMCA, vt_m