# Check if a number is divisible by 47 or not

• Last Updated : 22 Jul, 2022

Given a number N, the task is to check whether the number is divisible by 47 or not.
Examples:

Input: N = 1645
Output: yes
Explanation:
47 * 35 = 1645
Input: N = 4606
Output: yes
Explanation:
47 * 98 = 4606

Approach: The divisibility test of 47 is:

1. Extract the last digit.
2. Subtract 14 * last digit from the remaining number obtained after removing the last digit.
3. Repeat the above steps until a two-digit number, or zero, is obtained.
4. If the two-digit number is divisible by 47, or it is 0, then the original number is also divisible by 47.

For example:

```If N = 59173

Step 1:
N = 59173
Last digit = 3
Remaining number = 5917
Subtracting 14 times last digit
Resultant number = 5917 - 14*3 = 5875

Step 2:
N = 5875
Last digit = 5
Remaining number = 587
Subtracting 14 times last digit
Resultant number = 587 - 14*5 = 517

Step 3:
N = 517
Last digit = 7
Remaining number = 51
Subtracting 14 times last digit
Resultant number = 51 - 14*7 = -47

Step 4:
N = -47
Since N is a two-digit number,
and -47 is divisible by 47

Therefore N = 59173 is also divisible by 47```

Below is the implementation of the above approach:

## C++

 `// C++ program to check whether a number``// is divisible by 47 or not``#include``#include` `using` `namespace` `std;` `// Function to check if the number is  divisible by 47 or not``bool` `isDivisible(``int` `n) ``{``    ``int` `d;``    ``// While there are at least two digits``    ``while` `(n / 100)``    ``{`` ` `        ``// Extracting the last``        ``d = n % 10;`` ` `        ``// Truncating the number``        ``n /= 10;`` ` `        ``// Subtracting fourteen times the last``        ``// digit to the remaining number``        ``n = ``abs``(n-(d * 14));``    ``}``    ``// Finally return if the two-digit``    ``// number is divisible by 47 or not``    ``return` `(n % 47 == 0) ;``}` `// Driver Code``int` `main() {``    ``int` `N = 59173;`` ` `    ``if` `(isDivisible(N))``        ``cout<<``"Yes"``<

## Java

 `// Java program to check whether a number``// is divisible by 47 or not``import` `java.util.*;` `class` `GFG{`` ` `// Function to check if the number is  divisible by 47 or not``static` `boolean` `isDivisible(``int` `n) ``{``    ``int` `d;``    ` `    ``// While there are at least two digits``    ``while` `((n / ``100``) > ``0``)``    ``{``  ` `        ``// Extracting the last``        ``d = n % ``10``;``  ` `        ``// Truncating the number``        ``n /= ``10``;``  ` `        ``// Subtracting fourteen times the last``        ``// digit to the remaining number``        ``n = Math.abs(n - (d * ``14``));``    ``}` `    ``// Finally return if the two-digit``    ``// number is divisible by 47 or not``    ``return` `(n % ``47` `== ``0``) ;``}`` ` `// Driver Code``public` `static` `void` `main(String[] args) {``    ``int` `N = ``59173``;``  ` `    ``if` `(isDivisible(N))``        ``System.out.print(``"Yes"``) ;``    ``else``        ``System.out.print(``"No"``);``    ` ` ``}    ``}   ` `// This code is contributed by PrinciRaj1992`

## Python 3

 `# Python program to check if a number``# is divisible by 47 or not` `# Function to check if the number is``# divisible by 47 or not``def` `isDivisible(n) :`` ` `    ``# While there are at least two digits``    ``while` `n ``/``/` `100` `:`` ` `        ``# Extracting the last``        ``d ``=` `n ``%` `10`` ` `        ``# Truncating the number``        ``n ``/``/``=` `10`` ` `        ``# Subtracting fourteen times the last``        ``# digit to the remaining number``        ``n ``=` `abs``(n``-` `(d ``*` `14``))`` ` `    ``# Finally return if the two-digit``    ``# number is divisible by 43 or not``    ``return` `(n ``%` `47` `=``=` `0``)`` ` `# Driver Code``if` `__name__ ``=``=` `"__main__"` `:``     ` `    ``n ``=` `59173` `    ``if` `(isDivisible(n)) :``        ``print``(``"Yes"``)``    ``else` `:``        ``print``(``"No"``)`

## C#

 `// C# program to check whether a number``// is divisible by 47 or not``using` `System;``        ` `class` `GFG``{``    ` `// Function to check if the number is divisible by 47 or not``static` `bool` `isDivisible(``int` `n)``{``    ``int` `d;``    ` `    ``// While there are at least two digits``    ``while` `(n / 100 > 0)``    ``{``    ` `        ``// Extracting the last``        ``d = n % 10;``    ` `        ``// Truncating the number``        ``n /= 10;``    ` `        ``// Subtracting fourteen times the last``        ``// digit to the remaining number``        ``n = Math.Abs(n - (d * 14));``    ``}``    ` `    ``// Finally return if the two-digit``    ``// number is divisible by 47 or not``    ``return` `(n % 47 == 0);``}``    ` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `N = 59173;``    ` `    ``if` `(isDivisible(N))``        ``Console.WriteLine(``"Yes"``);``    ``else``        ``Console.WriteLine(``"No"``);``}``}` `// This code is contributed by mohit kumar 29.`

## Javascript

 ``

## PHP

 ``

Output:

`Yes`

Time Complexity: O(log10N)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up