Given a number, check whether it is a mystery number or not. A mystery number is a number that can be expressed as the sum of two numbers and those two numbers should be the reverse of each other.
Examples:
Input : n = 121
Output : 29 92
Input : n = 22
Output : 11 11
Source: Paytm Interview Set 23
The idea is to try every possible pair smaller than or equal to n.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
int reverseNum( int x)
{
string s = to_string(x);
reverse(s.begin(), s.end());
stringstream ss(s);
int rev = 0;
ss >> rev;
return rev;
}
bool isMysteryNumber( int n)
{
for ( int i=1; i <= n/2; i++)
{
int j = reverseNum(i);
if (i + j == n)
{
cout << i << " " << j;
return true ;
}
}
cout << "Not a Mystery Number" ;
return false ;
}
int main()
{
int n = 121;
isMysteryNumber(n);
return 0;
}
|
Java
class GFG
{
static int reverseNum( int x)
{
String s = Integer.toString(x);
String str= "" ;
for ( int i=s.length()- 1 ;i>= 0 ;i--)
{
str=str+s.charAt(i);
}
int rev=Integer.parseInt(str);
return rev;
}
static boolean isMysteryNumber( int n)
{
for ( int i= 1 ; i <= n/ 2 ; i++)
{
int j = reverseNum(i);
if (i + j == n)
{
System.out.println( i + " " + j);
return true ;
}
}
System.out.println( "Not a Mystery Number" );
return false ;
}
public static void main(String []args)
{
int n = 121 ;
isMysteryNumber(n);
}
}
|
Python3
def reverseNum(x):
s = str (x)
s = s[:: - 1 ]
return int (s)
def isMysteryNumber(n):
for i in range ( 1 , n / / 2 + 1 ):
j = reverseNum(i)
if i + j = = n:
print (i, j)
return True
print ( "Not a Mystery Number" )
return False
n = 121
isMysteryNumber(n)
|
C#
using System;
class GFG
{
static int reverseNum( int x)
{
string s = x.ToString();
string str= "" ;
for ( int i=s.Length-1;i>=0;i--)
{
str=str+s[i];
}
int rev=Int32.Parse(str);
return rev;
}
static bool isMysteryNumber( int n)
{
for ( int i=1; i <= n/2; i++)
{
int j = reverseNum(i);
if (i + j == n)
{
Console.WriteLine( i + " " + j);
return true ;
}
}
Console.WriteLine( "Not a Mystery Number" );
return false ;
}
public static void Main()
{
int n = 121;
isMysteryNumber(n);
}
}
|
PHP
<?php
function reverseNum( $x )
{
$s = (string) $x ;
$s = strrev ( $s );
$rev = (int) $s ;
return $rev ;
}
function isMysteryNumber( $n )
{
for ( $i =1; $i <= $n /2; $i ++)
{
$j = reverseNum( $i );
if ( $i + $j == $n )
{
echo $i . " " . $j ;
return true;
}
}
echo "Not a Mystery Number" ;
return false;
}
$n = 121;
isMysteryNumber( $n );
return 0;
?>
|
Javascript
<script>
function reverseNum(x)
{
let s = x.toString();
let str= "" ;
for (let i=s.length-1;i>=0;i--)
{
str=str+s[i];
}
let rev=parseInt(str);
return rev;
}
function isMysteryNumber(n)
{
for (let i=1; i <= Math.floor(n/2); i++)
{
let j = reverseNum(i);
if (i + j == n)
{
document.write( i + " " + j+ "<br>" );
return true ;
}
}
document.write( "Not a Mystery Number<br>" );
return false ;
}
let n = 121;
isMysteryNumber(n);
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(log10n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!