Check if a number has an odd count of odd divisors and even count of even divisors

Given an integer N, the task is to check if N has an odd number of odd divisors and even number of even divisors.

Examples:

Input: N = 36
Output:  Yes
Explanation:
Divisors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36
Count of Odd Divisors(1, 3, 9) = 3 [Odd]
Count of Even Divisors(2, 4, 6, 12, 18, 36) = 6 [Even]

Input:  N  =  28
Output:  No

 

Naive Approach: The idea is to find the factors of the number N and count the odd factors of N and even factors of N. Finally, check if the count of odd factors is odd and count of even factors is even.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
#define lli long long int
 
// Function to find the count
// of even and odd factors of N
void checkFactors(lli N)
{
    lli ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for (lli i = 1;
         i <= sqrt(N) + 1; i++) {
        if (N % i == 0) {
            if (i == N / i) {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
            else {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
                if ((N / i) % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
        }
    }
 
    // Condition to check if the even
    // factors of the number N is
    // is even and count of
    // odd factors is odd
    if (ev_count % 2 == 0
        && od_count % 2 == 1)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
}
 
// Driver Code
int main()
{
    lli N = 36;
    checkFactors(N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the
// above approach
import java.util.*;
 
class GFG{
 
// Function to find the count
// of even and odd factors of N
static void checkFactors(long N)
{
    long ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for(long i = 1;
             i <= Math.sqrt(N) + 1; i++)
    {
        if (N % i == 0)
        {
            if (i == N / i)
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
            else
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
                if ((N / i) % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
        }
    }
 
    // Condition to check if the even
    // factors of the number N is
    // is even and count of
    // odd factors is odd
    if (ev_count % 2 == 0 && od_count % 2 == 1)
        System.out.print("Yes" + "\n");
    else
        System.out.print("No" + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    long N = 36;
     
    checkFactors(N);
}
}
 
// This code is contributed by amal kumar choubey

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the
# above approach
 
# Function to find the count
# of even and odd factors of N
def checkFactors(N):
     
    ev_count = 0; od_count = 0;
 
    # Loop runs till square root
    for i in range(1, int(pow(N, 1 / 2)) + 1):
        if (N % i == 0):
            if (i == N / i):
                 
                if (i % 2 == 0):
                    ev_count += 1;
                else:
                    od_count += 1;
                     
            else:
                if (i % 2 == 0):
                    ev_count += 1;
                else:
                    od_count += 1;
                if ((N / i) % 2 == 0):
                    ev_count += 1;
                else:
                    od_count += 1;
             
    # Condition to check if the even
    # factors of the number N is
    # is even and count of
    # odd factors is odd
    if (ev_count % 2 == 0 and
        od_count % 2 == 1):
        print("Yes" + "");
    else:
        print("No" + "");
 
# Driver Code
if __name__ == '__main__':
     
    N = 36;
 
    checkFactors(N);
 
# This code is contributed by Princi Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the
// above approach
using System;
 
class GFG{
 
// Function to find the count
// of even and odd factors of N
static void checkFactors(long N)
{
    long ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for(long i = 1;
             i <= Math.Sqrt(N) + 1; i++)
    {
        if (N % i == 0)
        {
            if (i == N / i)
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
            else
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
                if ((N / i) % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
        }
    }
 
    // Condition to check if the even
    // factors of the number N is
    // is even and count of
    // odd factors is odd
    if (ev_count % 2 == 0 && od_count % 2 == 1)
        Console.Write("Yes" + "\n");
    else
        Console.Write("No" + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
    long N = 36;
     
    checkFactors(N);
}
}
 
// This code is contributed by Amit Katiyar 

chevron_right


Output: 

Yes


 

Efficient Approach:  The key observation in the problem is that the number of odd divisors is odd and number of even divisors is even only in case of perfect squares. Hence, the best solution would be to check if the given number is a perfect square or not. If it’s a perfect square, then print “Yes” else print “No”.

Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
#define lli long long int
 
// Function to check if the
// number is a perfect square
bool isPerfectSquare(long double x)
{
    long double sr = sqrt(x);
 
    // If square root is an integer
    return ((sr - floor(sr)) == 0);
}
 
// Function to check
// if count of even divisors is even
// and count of odd divisors is odd
void checkFactors(lli N)
{
    if (isPerfectSquare(N))
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
}
 
// Driver Code
int main()
{
    lli N = 36;
 
    checkFactors(N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG{
     
// Function to check if the
// number is a perfect square
static boolean isPerfectSquare(double x)
{
     
    // Find floating point value of
    // square root of x.
    double sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function to check if count of
// even divisors is even and count
// of odd divisors is odd
static void checkFactors(int x)
{
    if (isPerfectSquare(x))
        System.out.print("Yes");
    else
        System.out.print("No");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 36;
 
    checkFactors(N);
}
}
 
// This code is contributed by dewantipandeydp

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
import math
 
# Function to check if the
# number is a perfect square
def isPerfectSquare(x):
 
    # Find floating povalue of
    # square root of x.
    sr = pow(x, 1 / 2);
 
    # If square root is an integer
    return ((sr - math.floor(sr)) == 0);
 
# Function to check if count of
# even divisors is even and count
# of odd divisors is odd
def checkFactors(x):
    if (isPerfectSquare(x)):
        print("Yes");
    else:
        print("No");
 
# Driver code
if __name__ == '__main__':
    N = 36;
 
    checkFactors(N);
 
# This code is contributed by sapnasingh4991

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
 
class GFG{
     
// Function to check if the
// number is a perfect square
static bool isPerfectSquare(double x)
{
     
    // Find floating point value of
    // square root of x.
    double sr = Math.Sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.Floor(sr)) == 0);
}
 
// Function to check if count of
// even divisors is even and count
// of odd divisors is odd
static void checkFactors(int x)
{
    if (isPerfectSquare(x))
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 36;
 
    checkFactors(N);
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Output: 

Yes



 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.