Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Check if a number can be represented as sum of non zero powers of 2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an integer N, the task is to check whether N can be represented as the sum of powers of 2 where all the powers are > 0 i.e. 20 cannot contribute to the sum.
Examples: 
 

Input: N = 10 
Output:
23 + 21 = 10
Input: N = 9 
Output:
 

 

Approach: There are two cases: 
 

  1. When N is even then it can always be represented as the sum of powers of 2 when power > 0.
  2. When N is odd then it can never be represented as the sum of powers of 2 if 20 is not included in the sum.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that return true if n
// can be represented as the sum
// of powers of 2 without using 2^0
bool isSumOfPowersOfTwo(int n)
{
    if (n % 2 == 1)
        return false;
    else
        return true;
}
 
// Driver code
int main()
{
    int n = 10;
    if (isSumOfPowersOfTwo(n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
class GFG {
 
    // Function that return true if n
    // can be represented as the sum
    // of powers of 2 without using 2^0
    static boolean isSumOfPowersOfTwo(int n)
    {
        if (n % 2 == 1)
            return false;
        else
            return true;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 10;
        if (isSumOfPowersOfTwo(n))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}

Python3




# Python3 implementation of the approach
 
# Function that return true if n
# can be represented as the sum
# of powers of 2 without using 2^0
def isSumOfPowersOfTwo(n):
    if n % 2 == 1:
        return False
    else:
        return True
 
# Driver code
n = 10
if isSumOfPowersOfTwo(n):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Shrikant13

C#




// C# implementation of the approach
using System;
 
class GFG {
 
    // Function that return true if n
    // can be represented as the sum
    // of powers of 2 without using 2^0
    static bool isSumOfPowersOfTwo(int n)
    {
        if (n % 2 == 1)
            return false;
        else
            return true;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 10;
        if (isSumOfPowersOfTwo(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}

PHP




<?php
// PHP implementation of the approach
 
// Function that return true if n
// can be represented as the sum
// of powers of 2 without using 2^0
function isSumOfPowersOfTwo($n)
{
    if ($n % 2 == 1)
        return false;
    else
        return true;
}
 
// Driver code
$n = 10;
if (isSumOfPowersOfTwo($n))
    echo("Yes");
else
    echo("No");
 
// This code is contributed
// by Code_Mech
?>

Javascript




<script>
// Javascript implementation of the approach
 
// Function that return true if n
// can be represented as the sum
// of powers of 2 without using 2^0
function isSumOfPowersOfTwo(n)
{
    if (n % 2 == 1)
        return false;
    else
        return true;
}
 
// Driver code
var n = 10;
if (isSumOfPowersOfTwo(n))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by noob2000.
</script>

Output: 

Yes

 

Time Complexity: O(1)

Auxiliary Space: O(1)
 

Approach 2:

Here’s another approach to solve the problem:

  • Start with the given number n.
  • Initialize a variable i to 1.
  • While i is less than n, do the following steps:
  • a. If i is a power of 2, compute n-i.
  • b. If n-i is also a power of 2, return true.
  • c. Increment i by 1.
  • If none of the pairs (i, n-i) are both powers of 2, return false.

Here’s the code for the above approach:

C++




#include <iostream>
#include <cmath>
using namespace std;
 
bool isPowerOfTwo(int n) {
    if (n == 0) {
        return false;
    }
    return (ceil(log2(n)) == floor(log2(n)));
}
 
bool canSumToPowerOfTwo(int n) {
    for (int i = 1; i < n; i++) {
        if (isPowerOfTwo(i) && isPowerOfTwo(n-i)) {
            return true;
        }
    }
    return false;
}
 
int main() {
    int n = 10;
    if (canSumToPowerOfTwo(n)) {
        cout << "Yes" << endl;
    }
    else {
        cout << "No" << endl;
    }
    return 0;
}

Javascript




// This function determines if a given integer n is a power of two
function isPowerOfTwo(n) {
    if (n == 0) {
        return false;
    }
    return (Math.ceil(Math.log2(n)) == Math.floor(Math.log2(n)));
}
 
// This function determines if it is possible to represent a given integer n
// as the sum of two distinct powers of two
function canSumToPowerOfTwo(n) {
 
    // Loop through all possible pairs of powers of two that sum to n
    for (let i = 1; i < n; i++) {
        if (isPowerOfTwo(i) && isPowerOfTwo(n-i)) {
            return true;
        }
    }
 
    // If no such pair exists, return false
    return false;
}
 
// Test the function with some sample input
let n = 10;
if (canSumToPowerOfTwo(n)) {
    console.log("Yes");
}
else {
    console.log("No");
}

Output: 

Yes

Time Complexity: O(1)

Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 20 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials