Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if a number can be expressed as a product of exactly K prime divisors

  • Difficulty Level : Medium
  • Last Updated : 17 Nov, 2021

Given an integer N, the task is to check if it can be expressed as a product of exactly K prime divisors. 
Examples:
 

Input: N = 12, K = 3
Output: Yes
Explanation:
12 can be expressed as product of 2×2×3.

Input: N = 14, K = 3
Output:  No
Explanation:
14 can be only expressed as product of 2×7.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach:
To solve the problem mentioned above we are given the value N and we will find the maximum number of values we can split N into. We can represent prime factorization of N as \prod_{i=1}^{K} {p_{i}}^{a_{i}}     where pi are the prime factors of N and ai are the exponents. We know that total number of divisors of N is \prod_{i=1}^{K} (a_{i}+1)     . Therefore, we can observe that we have to check whether it is possible to represent N as product of K numbers or not. If the maximum split is less than K then it is not possible to express it in exactly K prime divisors, else it is always possible.
 



C++




// CPP implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
 
#include <bits/stdc++.h>
using namespace std;
 
// function to find K prime divisors
void KPrimeDivisors(int N, int K)
{
    int maximum_split = 0;
 
    // count number of 2s that divide N
    while (N % 2 == 0) {
        maximum_split++;
        N /= 2;
    }
 
    // N must be odd at this point.
    // So we can skip one element
    for (int i = 3; i * i <= N; i = i + 2) {
 
        while (N % i == 0) {
            // divide the value of N
            N = N / i;
 
            // increment count
            maximum_split++;
        }
    }
 
    // Condition to handle the case when n
    // is a prime number greater than 2
    if (N > 2)
        maximum_split++;
 
    // check if maximum_split is less than K
    // then it not possible
    if (maximum_split < K) {
        printf("No\n");
        return;
    }
 
    printf("Yes\n");
}
 
/* Driver code */
int main()
{
    // initialise N and K
    int N = 12;
    int K = 3;
 
    KPrimeDivisors(N, K);
 
    return 0;
}

Java




// Java implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
class GFG {
     
    // function to find K prime divisors
    static void KPrimeDivisors(int N, int K)
    {
        int maximum_split = 0;
     
        // count number of 2s that divide N
        while (N % 2 == 0) {
            maximum_split++;
            N /= 2;
        }
     
        // N must be odd at this point.
        // So we can skip one element
        for (int i = 3; i * i <= N; i = i + 2) {
     
            while (N % i == 0) {
                // divide the value of N
                N = N / i;
     
                // increment count
                maximum_split++;
            }
        }
     
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
     
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K) {
            System.out.println("No");
            return;
        }
     
        System.out.println("Yes");
    }
     
    /* Driver code */
    public static void main (String[] args)
    {
        // initialise N and K
        int N = 12;
        int K = 3;
     
        KPrimeDivisors(N, K);
    }
}
 
// This code is contributed by Yash_R

Python3




# Python implementation to Check if a
# number can be expressed as a
# product of exactly K prime divisors
 
import math as mt
 
# function to find K prime divisors
def KPrimeDivisors(n, k):
     
    # To count maximum split of N
    maximum_split = 0
     
    # count number of 2s that divide N
    while n % 2 == 0:
        maximum_split+= 1
        n = n // 2
         
    # n must be odd at this point
    # so we skip one element
    for i in range(3, mt.ceil(mt.sqrt(n)), 2):
        while n % i == 0:
            n = n / i;
            maximum_split+= 1
             
    # Condition to handle the case when n
    # is a prime number greater than 2
    if n > 2:
        maximum_split+= 1
         
    # check if maximum_split is less than K
    # then it not possible
    if maximum_split < k:
        print("No")
        return
 
    print("Yes")
         
     
 
# Driver code
N = 12
K = 3
KPrimeDivisors(N, K)

C#




// C# implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
using System;
 
class GFG {
      
    // function to find K prime divisors
    static void KPrimeDivisors(int N, int K)
    {
        int maximum_split = 0;
      
        // count number of 2s that divide N
        while (N % 2 == 0) {
            maximum_split++;
            N /= 2;
        }
      
        // N must be odd at this point.
        // So we can skip one element
        for (int i = 3; i * i <= N; i = i + 2) {
      
            while (N % i == 0) {
 
                // divide the value of N
                N = N / i;
      
                // increment count
                maximum_split++;
            }
        }
      
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
      
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K) {
            Console.WriteLine("No");
            return;
        }
      
        Console.WriteLine("Yes");
    }
      
    /* Driver code */
    public static void Main(String[] args)
    {
        // initialise N and K
        int N = 12;
        int K = 3;
      
        KPrimeDivisors(N, K);
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
// javascript implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors    
 
// function to find K prime divisors
    function KPrimeDivisors(N , K)
    {
        var maximum_split = 0;
 
        // count number of 2s that divide N
        while (N % 2 == 0)
        {
            maximum_split++;
            N /= 2;
        }
 
        // N must be odd at this point.
        // So we can skip one element
        for (i = 3; i * i <= N; i = i + 2)
        {
 
            while (N % i == 0)
            {
             
                // divide the value of N
                N = N / i;
 
                // increment count
                maximum_split++;
            }
        }
 
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
 
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K)
        {
            document.write("No");
            return;
        }
 
        document.write("Yes");
    }
 
    /* Driver code */
     
        // initialise N and K
        var N = 12;
        var K = 3;
        KPrimeDivisors(N, K);
 
// This code is contributed by gauravrajput1.
</script>
Output: 
Yes

 

Time Complexity: O(sqrt(N))

Auxiliary Space: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :