Skip to content
Related Articles

Related Articles

Improve Article

Check if a Matrix is Reverse Bitonic or Not

  • Last Updated : 07 May, 2021

Given a matrix m[][], the task is to check if the given matrix is Reverse Bitonic or not. If the given matrix is Reverse Bitonic, then print Yes. Otherwise, print No.

If all the rows and the columns of the given matrix have elements in one of the following orders:

  • Strictly increasing
  • Strictly decreasing
  • Strictly decreasing followed by strictly increasing

Then the given matrix is said to be a Reverse Bitonic Matrix

Examples:

Input: m[][] = {{2, 3, 4}, {1, 2, 3}, {4, 5, 6} } 
Output: Yes
Explanation: 
All the rows of the given matrix forms an increasing sequence. 
All the columns of the given matrix {2, 1, 4}, {3, 2, 5}, {4, 3, 6} forms a decreasing followed by increasing sequence. 
Therefore, the matrix is Reverse Bitonic.
Input: m[][] = {{1, 2, 3}, {4, 5, 6}, {2, 5, 4}} 
Output: No 
Explanation: 
Since the column {1, 4, 2} does not satisfy any of the three conditions, the given matrix is not Reverse Bitonic.



Approach
Follow the steps below to solve the problem:

  • Check the elements of each row of the matrix one by one, if it forms a Reverse Bitonic sequence or not. If any row is found to be not Reverse Bitonic, print No.
  • Similarly, check the elements of each column one by one, if it forms a Reverse Bitonic sequence or not. If any row is found to be not Reverse Bitonic, print No.
  • If all the rows and columns are found to be Reverse Bitonic, then print Yes.

Below is the implementation of the above approach:

C++




// C++ Program to check if a
// matrix is Reverse Bitonic or not
#include <bits/stdc++.h>
using namespace std;
 
const int N = 3, M = 3;
 
// Function to check if an
// array is Reverse Bitonic or not
bool checkReverseBitonic(int arr[], int n)
{
    int i, j, f = 0;
 
    // Check for decreasing sequence
    for (i = 1; i < n; i++) {
        if (arr[i] < arr[i - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else {
            f = 1;
            break;
        }
    }
 
    if (i == n)
        return true;
 
    // Check for increasing sequence
    for (j = i + 1; j < n; j++) {
        if (arr[j] > arr[j - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else {
            if (f == 1)
                return false;
        }
    }
 
    return true;
}
 
// Function to check whether given
// matrix is bitonic or not
void check(int arr[N][M])
{
    int f = 0;
 
    // Check row-wise
    for (int i = 0; i < N; i++) {
        if (!checkReverseBitonic(arr[i], M)) {
            cout << "No" << endl;
            return;
        }
    }
 
    // Check column wise
    for (int i = 0; i < N; i++) {
        // Generate an array
        // consisting of elements
        // of the current column
        int temp[N];
 
        for (int j = 0; j < N; j++) {
            temp[j] = arr[j][i];
        }
 
        if (!checkReverseBitonic(temp, N)) {
            cout << "No" << endl;
            return;
        }
    }
 
    cout << "Yes";
}
 
// Driver Code
int main()
{
    int m[N][M] = { { 2, 3, 4 },
                    { 1, 2, 3 },
                    { 4, 5, 6 } };
 
    check(m);
 
    return 0;
}

Java




// Java Program to check if a
// matrix is Reverse Bitonic or not
import java.util.*;
class GFG{
 
static int N = 3, M = 3;
 
// Function to check if an
// array is Reverse Bitonic or not
static boolean checkReverseBitonic(int arr[], int n)
{
    int i, j, f = 0;
 
    // Check for decreasing sequence
    for (i = 1; i < n; i++)
    {
        if (arr[i] < arr[i - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            f = 1;
            break;
        }
    }
 
    if (i == n)
        return true;
 
    // Check for increasing sequence
    for (j = i + 1; j < n; j++)
    {
        if (arr[j] > arr[j - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            if (f == 1)
                return false;
        }
    }
 
    return true;
}
 
// Function to check whether given
// matrix is bitonic or not
static void check(int arr[][])
{
    int f = 0;
 
    // Check row-wise
    for (int i = 0; i < N; i++)
    {
        if (!checkReverseBitonic(arr[i], M))
        {
            System.out.print("No" + "\n");
            return;
        }
    }
 
    // Check column wise
    for (int i = 0; i < N; i++)
    {
        // Generate an array
        // consisting of elements
        // of the current column
        int temp[] = new int[N];
 
        for (int j = 0; j < N; j++)
        {
            temp[j] = arr[j][i];
        }
 
        if (!checkReverseBitonic(temp, N))
        {
            System.out.print("No" + "\n");
            return;
        }
    }
    System.out.print("Yes");
}
 
// Driver Code
public static void main(String[] args)
{
    int m[][] = { { 2, 3, 4 },
                  { 1, 2, 3 },
                  { 4, 5, 6 } };
 
    check(m);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 program to check if a
# matrix is Reverse Bitonic or not
N = 3
M = 3
 
# Function to check if an
# array is Reverse Bitonic or not
def checkReverseBitonic(arr, n):
 
    f = 0
 
    # Check for decreasing sequence
    for i in range(1, n):
        if (arr[i] < arr[i - 1]):
            continue
 
        if (arr[i] == arr[i - 1]):
            return False
 
        else:
            f = 1
            break
 
    if (i == n):
        return True
 
    # Check for increasing sequence
    for j in range(i + 1, n):
        if (arr[j] > arr[j - 1]):
            continue
 
        if (arr[i] == arr[i - 1]):
            return False
 
        else:
            if (f == 1):
                return False
     
    return True
 
# Function to check whether given
# matrix is bitonic or not
def check(arr):
 
    f = 0
 
    # Check row-wise
    for i in range (N):
        if (not checkReverseBitonic(arr[i], M)):
            print("No")
            return
 
    # Check column wise
    for i in range(N):
         
        # Generate an array
        # consisting of elements
        # of the current column
        temp = [0] * N
 
        for j in range(N):
            temp[j] = arr[j][i]
 
        if (not checkReverseBitonic(temp, N)):
            print("No")
            return
 
    print("Yes")
 
# Driver Code
if __name__ == "__main__":
 
    m = [ [ 2, 3, 4 ],
          [ 1, 2, 3 ],
          [ 4, 5, 6 ] ]
 
    check(m)
 
# This code is contributed by chitranayal

C#




// C# Program to check if a
// matrix is Reverse Bitonic or not
using System;
class GFG{
 
static int N = 3, M = 3;
 
// Function to check if an
// array is Reverse Bitonic or not
static bool checkReverseBitonic(int []arr, int n)
{
    int i, j, f = 0;
 
    // Check for decreasing sequence
    for (i = 1; i < n; i++)
    {
        if (arr[i] < arr[i - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            f = 1;
            break;
        }
    }
 
    if (i == n)
        return true;
 
    // Check for increasing sequence
    for (j = i + 1; j < n; j++)
    {
        if (arr[j] > arr[j - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            if (f == 1)
                return false;
        }
    }
 
    return true;
}
 
// Function to check whether given
// matrix is bitonic or not
static void check(int [,]arr)
{
    // Check row-wise
    for (int i = 0; i < N; i++)
    {
        if (!checkReverseBitonic(GetRow(arr, i), M))
        {
            Console.Write("No" + "\n");
            return;
        }
    }
 
    // Check column wise
    for (int i = 0; i < N; i++)
    {
        // Generate an array
        // consisting of elements
        // of the current column
        int []temp = new int[N];
 
        for (int j = 0; j < N; j++)
        {
            temp[j] = arr[j,i];
        }
 
        if (!checkReverseBitonic(temp, N))
        {
            Console.Write("No" + "\n");
            return;
        }
    }
    Console.Write("Yes");
}
   
public static int[] GetRow(int[,] matrix, int row)
{
    var rowLength = matrix.GetLength(1);
    var rowVector = new int[rowLength];
 
    for (var i = 0; i < rowLength; i++)
      rowVector[i] = matrix[row, i];
 
    return rowVector;
}
   
// Driver Code
public static void Main(String[] args)
{
    int [,]m = {{ 2, 3, 4 },
                { 1, 2, 3 },
                { 4, 5, 6 }};
 
    check(m);
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
 
// Java script Program to check if a
// matrix is Reverse Bitonic or not
 
 
let N = 3, M = 3;
 
// Function to check if an
// array is Reverse Bitonic or not
function checkReverseBitonic(arr,n)
{
    let i, j, f = 0;
 
    // Check for decreasing sequence
    for (i = 1; i < n; i++)
    {
        if (arr[i] < arr[i - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            f = 1;
            break;
        }
    }
 
    if (i == n)
        return true;
 
    // Check for increasing sequence
    for (j = i + 1; j < n; j++)
    {
        if (arr[j] > arr[j - 1])
            continue;
 
        if (arr[i] == arr[i - 1])
            return false;
 
        else
        {
            if (f == 1)
                return false;
        }
    }
 
    return true;
}
 
// Function to check whether given
// matrix is bitonic or not
function check(arr)
{
    let f = 0;
 
    // Check row-wise
    for (let i = 0; i < N; i++)
    {
        if (!checkReverseBitonic(arr[i], M))
        {
            document.write("No" + "<br>");
            return;
        }
    }
 
    // Check column wise
    for (let i = 0; i < N; i++)
    {
        // Generate an array
        // consisting of elements
        // of the current column
        let temp= [N];
 
        for (let j = 0; j < N; j++)
        {
            temp[j] = arr[j][i];
        }
 
        if (!checkReverseBitonic(temp, N))
        {
            document.write("No" + "<br>");
            return;
        }
    }
    document.write("Yes");
}
 
// Driver Code
let m = [[ 2, 3, 4 ],
                [ 1, 2, 3 ],
                [ 4, 5, 6 ]];
 
    check(m);
 
 
// This code is contributed by sravan kumar
</script>
Output: 
Yes

 

Time Complexity: O(N × M) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :