Given a string str and a positive integer K. The task is to find if there exist a Pythagorean Triples in the first window of size K of a string which have the same characters as str but is largest in lexicographical order.
Note: Every character is in lower case and consider the following values for each alphabet to check if there exist Pythagorean triples: a = 1, b = 2, . . ., y = 25, z = 26.
A triplet(ch1, ch2, ch3) is called Pythagorean triples if (ch1)2 + (ch2)2 = (ch3)2.
Examples:
Input: str = “abxczde”, K = 4
Output: NO
Explanation: The lexicographically largest string having the same characters is zxedcba.
The first window of size 4 is “zxed”, which does not contain any such triplet.
Input: str = “abcdef”, K = 4
Output: YES
Explanation: The lexicographically largest string possible is “fedcba”.
The first window of size 4 has “fedc” which have a triplet (c, d, e) that is Pythagorean.
Input: str = “dce”, K = 2
Output: NO
Explanation: As window size is less than 3, choosing a triple is not possible.
Approach: This problem can be solved using Greedy algorithm. Follow the steps below for approach:
Below is the implementation of the approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool Pythagorean(string s, int k)
{
if (k < 3) {
return false ;
}
sort(s.begin(), s.end(), greater< char >());
for ( int i = 0; i < k - 2; ++i) {
int r = k - 1;
int l = i + 1;
while (r > l) {
int a = pow (s[i] - 'a' + 1, 2);
int b = pow (s[l] - 'a' + 1, 2);
int c = pow (s[r] - 'a' + 1, 2);
if (a == b + c) {
return true ;
}
else if (a > b + c) {
r--;
}
else
l++;
}
}
return false ;
}
int main()
{
string str = "abcdef" ;
int K = 4;
bool ans = Pythagorean(str, K);
if (ans)
cout << "YES" ;
else
cout << "NO" ;
return 0;
}
|
Java
import java.util.*;
public class GFG
{
static void reverse( char [] a)
{
int i, n = a.length;
char t;
for (i = 0 ; i < n / 2 ; i++)
{
t = a[i];
a[i] = a[n - i - 1 ];
a[n - i - 1 ] = t;
}
}
static boolean Pythagorean(String str, int k)
{
if (k < 3 ) {
return false ;
}
char [] s = str.toCharArray();
Arrays.sort(s);
reverse(s);
for ( int i = 0 ; i < k - 2 ; ++i) {
int r = k - 1 ;
int l = i + 1 ;
while (r > l) {
int a = ( int )Math.pow(s[i] - 'a' + 1 , 2 );
int b = ( int )Math.pow(s[l] - 'a' + 1 , 2 );
int c = ( int )Math.pow(s[r] - 'a' + 1 , 2 );
if (a == b + c) {
return true ;
}
else if (a > b + c) {
r--;
}
else
l++;
}
}
return false ;
}
public static void main(String args[])
{
String str = "abcdef" ;
int K = 4 ;
boolean ans = Pythagorean(str, K);
if (ans)
System.out.println( "YES" );
else
System.out.println( "NO" );
}
}
|
Python3
def Pythagorean(st, k):
if (k < 3 ):
return False
s = []
for i in range ( len (st)):
s.append(st[i])
s.sort()
s.reverse()
for i in range (k - 2 ):
r = k - 1
l = i + 1
while (r > l):
a = pow ( ord (s[i]) - ord ( 'a' ) + 1 , 2 )
b = pow ( ord (s[l]) - ord ( 'a' ) + 1 , 2 )
c = pow ( ord (s[r]) - ord ( 'a' ) + 1 , 2 )
if (a = = b + c):
return True
elif (a > b + c) :
r - = 1
else :
l + = 1
return False
str = "abcdef"
K = 4
ans = Pythagorean( str , K)
if (ans):
print ( "YES" )
else :
print ( "NO" )
|
C#
using System;
public class GFG
{
static void reverse( char [] a)
{
int i, n = a.Length;
char t;
for (i = 0; i < n / 2; i++)
{
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static bool Pythagorean( string str, int k)
{
if (k < 3) {
return false ;
}
char [] s = str.ToCharArray();
Array.Sort(s);
reverse(s);
for ( int i = 0; i < k - 2; ++i) {
int r = k - 1;
int l = i + 1;
while (r > l) {
int a = ( int )Math.Pow(s[i] - 'a' + 1, 2);
int b = ( int )Math.Pow(s[l] - 'a' + 1, 2);
int c = ( int )Math.Pow(s[r] - 'a' + 1, 2);
if (a == b + c) {
return true ;
}
else if (a > b + c) {
r--;
}
else
l++;
}
}
return false ;
}
public static void Main()
{
string str = "abcdef" ;
int K = 4;
bool ans = Pythagorean(str, K);
if (ans)
Console.Write( "YES" );
else
Console.Write( "NO" );
}
}
|
Javascript
<script>
function Pythagorean(st, k)
{
if (k < 3) {
return false ;
}
s = [];
for (let i = 0; i < st.length; i++) { s.push(st.charAt(i)); }
s.sort( function (a, b) { return b.charCodeAt(0) - a.charCodeAt(0) })
for (let i = 0; i < k - 2; ++i) {
let r = k - 1;
let l = i + 1;
while (r > l) {
let a = Math.pow(s[i].charCodeAt(0) - 'a' .charCodeAt(0) + 1, 2);
let b = Math.pow(s[l].charCodeAt(0) - 'a' .charCodeAt(0) + 1, 2);
let c = Math.pow(s[r].charCodeAt(0) - 'a' .charCodeAt(0) + 1, 2);
5
if (a == b + c) {
return true ;
}
else if (a > b + c) {
r--;
}
else
l++;
}
}
return false ;
}
let str = "abcdef" ;
let K = 4;
let ans = Pythagorean(str, K);
if (ans)
document.write( "YES" );
else
document.write( "NO" );
</script>
|
Time Complexity: O(K2)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
14 Jan, 2022
Like Article
Save Article