# Check if a given pair of Numbers are Betrothed numbers or not

Given two positive numbers N and M, the task is to check whether the given pairs of numbers (N, M) form a Betrothed Numbers or not.

Examples:

Input: N = 48, M = 75
Output: Yes
Explanation:
The proper divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24
Sum of proper divisors of 48 is 75(sum1)
The proper divisors of 75 are 1, 3, 5, 15, 25
Sum of proper divisors of 48 is 49(sum2)
Since sum2 = N + 1, therefore the given pairs form berothered numbers.

Input: N = 95, M = 55
Output: No
Explanation:
The proper divisors of 95 are 1, 5, 19
Sum of proper divisors of 48 is 25(sum1)
The proper divisors of 55 are 1, 5, 11
Sum of proper divisors of 48 is 17(sum2)
Since Neither sum2 is equals N + 1 nor sum1 is equals to M + 1, therefore the given pairs doesn’t form berothered numbers.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. Find the sum of proper divisors of the given numbers N and M.
2. If sum of proper divisors of N is equals to M + 1 or sum of proper divisors of M is equals to N + 1 then the given pairs form a Betrothed Numbers.
3. Else it doen’t forms a pair of Betrothed Numbers.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to check whether N is ` `// Perfect Square or not ` `bool` `isPerfectSquare(``int` `N) ` `{ ` ` `  `    ``// Find sqrt ` `    ``double` `sr = ``sqrt``(N); ` ` `  `    ``return` `(sr - ``floor``(sr)) == 0; ` `} ` ` `  `// Function to check whether the given ` `// pairs of numbers is Betrothed Numbers ` `// or not ` `void` `BetrothedNumbers(``int` `n, ``int` `m) ` `{ ` `    ``int` `Sum1 = 1; ` `    ``int` `Sum2 = 1; ` ` `  `    ``// For finding the sum of all the ` `    ``// divisors of first number n ` `    ``for` `(``int` `i = 2; i <= ``sqrt``(n); i++) { ` `        ``if` `(n % i == 0) { ` `            ``Sum1 += i ` `                    ``+ (isPerfectSquare(n) ` `                           ``? 0 ` `                           ``: n / i); ` `        ``} ` `    ``} ` ` `  `    ``// For finding the sum of all the ` `    ``// divisors of second number m ` `    ``for` `(``int` `i = 2; i <= ``sqrt``(m); i++) { ` `        ``if` `(m % i == 0) { ` `            ``Sum2 += i ` `                    ``+ (isPerfectSquare(m) ` `                           ``? 0 ` `                           ``: m / i); ` `        ``} ` `    ``} ` ` `  `    ``if` `((n + 1 == Sum2) ` `        ``&& (m + 1 == Sum1)) { ` `        ``cout << ``"YES"` `<< endl; ` `    ``} ` `    ``else` `{ ` `        ``cout << ``"NO"` `<< endl; ` `    ``} ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `N = 9504; ` `    ``int` `M = 20734; ` ` `  `    ``// Function Call ` `    ``BetrothedNumbers(N, M); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program for the above approach ` `class` `GFG{ ` `  `  `// Function to check whether N is ` `// Perfect Square or not ` `static` `boolean` `isPerfectSquare(``int` `N) ` `{ ` `  `  `    ``// Find sqrt ` `    ``double` `sr = Math.sqrt(N); ` `  `  `    ``return` `(sr - Math.floor(sr)) == ``0``; ` `} ` `  `  `// Function to check whether the given ` `// pairs of numbers is Betrothed Numbers ` `// or not ` `static` `void` `BetrothedNumbers(``int` `n, ``int` `m) ` `{ ` `    ``int` `Sum1 = ``1``; ` `    ``int` `Sum2 = ``1``; ` `  `  `    ``// For finding the sum of all the ` `    ``// divisors of first number n ` `    ``for` `(``int` `i = ``2``; i <= Math.sqrt(n); i++) { ` `        ``if` `(n % i == ``0``) { ` `            ``Sum1 += i ` `                    ``+ (isPerfectSquare(n) ` `                           ``? ``0` `                           ``: n / i); ` `        ``} ` `    ``} ` `  `  `    ``// For finding the sum of all the ` `    ``// divisors of second number m ` `    ``for` `(``int` `i = ``2``; i <= Math.sqrt(m); i++) { ` `        ``if` `(m % i == ``0``) { ` `            ``Sum2 += i ` `                    ``+ (isPerfectSquare(m) ` `                           ``? ``0` `                           ``: m / i); ` `        ``} ` `    ``} ` `  `  `    ``if` `((n + ``1` `== Sum2) ` `        ``&& (m + ``1` `== Sum1)) { ` `        ``System.out.print(``"YES"` `+``"\n"``); ` `    ``} ` `    ``else` `{ ` `        ``System.out.print(``"NO"` `+``"\n"``); ` `    ``} ` `} ` `  `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``9504``; ` `    ``int` `M = ``20734``; ` `  `  `    ``// Function Call ` `    ``BetrothedNumbers(N, M); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 program for the above approach ` `from` `math ``import` `sqrt,floor ` ` `  `# Function to check whether N is ` `# Perfect Square or not ` `def` `isPerfectSquare(N): ` `    ``# Find sqrt ` `    ``sr ``=` `sqrt(N) ` ` `  `    ``return` `(sr ``-` `floor(sr)) ``=``=` `0` ` `  `# Function to check whether the given ` `# pairs of numbers is Betrothed Numbers ` `# or not ` `def` `BetrothedNumbers(n,m): ` `    ``Sum1 ``=` `1` `    ``Sum2 ``=` `1` ` `  `    ``# For finding the sum of all the ` `    ``# divisors of first number n ` `    ``for` `i ``in` `range``(``2``,``int``(sqrt(n))``+``1``,``1``): ` `        ``if` `(n ``%` `i ``=``=` `0``): ` `            ``if` `(isPerfectSquare(n)): ` `                ``Sum1 ``+``=` `i ` `            ``else``: ` `                ``Sum1 ``+``=` `i ``+` `n``/``i ` ` `  `    ``# For finding the sum of all the ` `    ``# divisors of second number m ` `    ``for` `i ``in` `range``(``2``,``int``(sqrt(m))``+``1``,``1``): ` `        ``if` `(m ``%` `i ``=``=` `0``): ` `            ``if` `(isPerfectSquare(m)): ` `                ``Sum2 ``+``=` `i ` `            ``else``: ` `                ``Sum2 ``+``=` `i ``+` `(m ``/` `i) ` ` `  `    ``if` `((n ``+` `1` `=``=` `Sum2) ``and` `(m ``+` `1` `=``=` `Sum1)): ` `        ``print``(``"YES"``)     ` `    ``else``: ` `        ``print``(``"NO"``) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``N ``=` `9504` `    ``M ``=` `20734` ` `  `    ``# Function Call ` `    ``BetrothedNumbers(N, M) ` ` `  `# This code is contributed by Surendra_Gangwar `

## C#

 `// C# program for the above approach ` `using` `System; ` ` `  `class` `GFG{ ` ` `  `// Function to check whether N is ` `// perfect square or not ` `static` `bool` `isPerfectSquare(``int` `N) ` `{ ` ` `  `    ``// Find sqrt ` `    ``double` `sr = Math.Sqrt(N); ` ` `  `    ``return` `(sr - Math.Floor(sr)) == 0; ` `} ` ` `  `// Function to check whether the given ` `// pairs of numbers is Betrothed numbers ` `// or not ` `static` `void` `BetrothedNumbers(``int` `n, ``int` `m) ` `{ ` `    ``int` `Sum1 = 1; ` `    ``int` `Sum2 = 1; ` ` `  `    ``// For finding the sum of all the ` `    ``// divisors of first number n ` `    ``for``(``int` `i = 2; i <= Math.Sqrt(n); i++) ` `    ``{ ` `       ``if` `(n % i == 0) ` `       ``{ ` `           ``Sum1 += i + (isPerfectSquare(n) ? ` `                                 ``0 : n / i); ` `       ``} ` `    ``} ` ` `  `    ``// For finding the sum of all the ` `    ``// divisors of second number m ` `    ``for``(``int` `i = 2; i <= Math.Sqrt(m); i++)  ` `    ``{ ` `       ``if` `(m % i == 0) ` `       ``{ ` `           ``Sum2 += i + (isPerfectSquare(m) ? ` `                                 ``0 : m / i); ` `       ``} ` `    ``} ` ` `  `    ``if` `((n + 1 == Sum2) && (m + 1 == Sum1)) ` `    ``{ ` `        ``Console.Write(``"YES"` `+ ``"\n"``); ` `    ``} ` `    ``else` `    ``{ ` `        ``Console.Write(``"NO"` `+ ``"\n"``); ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `N = 9504; ` `    ``int` `M = 20734; ` ` `  `    ``// Function Call ` `    ``BetrothedNumbers(N, M); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```NO
```

Time Complexity: O(√N + √M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.