Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if a Binary Tree is univalued or not

  • Difficulty Level : Basic
  • Last Updated : 30 Jun, 2021

Given a binary tree, the task is to check if the binary tree is univalued or not. If found to be true, then print “YES”. Otherwise, print “NO”.

A binary tree is univalued if every node in the tree has the same value.

Example:

Input: 
 

                   1
                  /  \
                 1    1 
                / \    \
               1   1    1

Output: YES 
Explantation: 
The value of all the nodes in the binary tree is equal to 1. 
Therefore, the required output is YES.



Input: 
 

                   9
                 /  \
                2   4 
               / \   \
             -1   3   0

Output: NO

 
 

DFS-based Approach: The idea is to traverse the tree using DFS and check if every node of the binary tree have the same value as the root node of the binary tree or not. If found to be true, then print “YES”. Otherwise, print “NO”.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a tree node
struct Node {
    int data;
    Node* left;
    Node* right;
};
 
// Function to insert a new node
// in a binary tree
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to check If the tree
// is uni-valued or not
bool isUnivalTree(Node* root)
{
 
    // If tree is an empty tree
    if (!root) {
        return true;
    }
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root->left != NULL
        && root->data != root->left->data)
        return false;
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root->right != NULL
        && root->data != root->right->data)
        return false;
 
    // Recurse on left and right subtree
    return isUnivalTree(root->left)
           && isUnivalTree(root->right);
}
 
// Driver Code
int main()
{
 
    /*
                1
              /   \
             1     1
           /  \     \
          1    1     1
    */
    Node* root = newNode(1);
    root->left = newNode(1);
    root->right = newNode(1);
    root->left->left = newNode(1);
    root->left->right = newNode(1);
    root->right->right = newNode(1);
 
    if (isUnivalTree(root) == 1) {
 
        cout << "YES";
    }
    else {
 
        cout << "NO";
    }
    return 0;
}

Java




// Java Program for the above approach
import java.util.*;
class GFG
{
 
// Structure of a tree node
static class Node
{
    int data;
    Node left;
    Node right;
};
 
// Function to insert a new node
// in a binary tree
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to check If the tree
// is uni-valued or not
static boolean isUnivalTree(Node root)
{
 
    // If tree is an empty tree
    if (root == null)
    {
        return true;
    }
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.left != null
        && root.data != root.left.data)
        return false;
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.right != null
        && root.data != root.right.data)
        return false;
 
    // Recurse on left and right subtree
    return isUnivalTree(root.left)
           && isUnivalTree(root.right);
}
 
// Driver Code
public static void main(String[] args)
{
 
    /*
                1
              /   \
             1     1
           /  \     \
          1    1     1
    */
    Node root = newNode(1);
    root.left = newNode(1);
    root.right = newNode(1);
    root.left.left = newNode(1);
    root.left.right = newNode(1);
    root.right.right = newNode(1);
 
    if (isUnivalTree(root))
    {
        System.out.print("YES");
    }
    else
    {
        System.out.print("NO");
    }
}
}
 
// This code is contributed by 29AjayKumar

Python3




# python3 Program for the above approach
 
# Structure of a tree node
class Node:
    def __init__(self, x):
        self.data = x
        self.left = None
        self.right = None
 
# Function to check If the tree
# is uni-valued or not
def isUnivalTree(root):
 
    # If tree is an empty tree
    if (not root):
        return True
 
    # If all the nodes on the left subtree
    # have not value equal to root node
    if (root.left != None and root.data != root.left.data):
        return False
 
    # If all the nodes on the left subtree
    # have not value equal to root node
    if (root.right != None and root.data != root.right.data):
        return False
 
    # Recurse on left and right subtree
    return isUnivalTree(root.left) and isUnivalTree(root.right)
 
# Driver Code
if __name__ == '__main__':
 
    # /*
    #             1
    #           /   \
    #          1     1
    #        /  \     \
    #       1    1     1
    # */
    root = Node(1)
    root.left = Node(1)
    root.right = Node(1)
    root.left.left = Node(1)
    root.left.right = Node(1)
    root.right.right = Node(1)
 
    if (isUnivalTree(root) == 1):
        print("YES")
    else:
        print("NO")
 
        # This code is contribute by mohit kumar 29

C#




// C# Program for the above approach
using System;
class GFG
{
 
// Structure of a tree node
class Node
{
    public int data;
    public Node left;
    public Node right;
};
 
// Function to insert a new node
// in a binary tree
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to check If the tree
// is uni-valued or not
static bool isUnivalTree(Node root)
{
 
    // If tree is an empty tree
    if (root == null)
    {
        return true;
    }
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.left != null
        && root.data != root.left.data)
        return false;
 
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.right != null
        && root.data != root.right.data)
        return false;
 
    // Recurse on left and right subtree
    return isUnivalTree(root.left)
           && isUnivalTree(root.right);
}
 
// Driver Code
public static void Main(String[] args)
{
 
    /*
                1
              /   \
             1     1
           /  \     \
          1    1     1
    */
    Node root = newNode(1);
    root.left = newNode(1);
    root.right = newNode(1);
    root.left.left = newNode(1);
    root.left.right = newNode(1);
    root.right.right = newNode(1);
 
    if (isUnivalTree(root))
    {
        Console.Write("YES");
    }
    else
    {
        Console.Write("NO");
    }
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript Program for the above approach
 
// Structure of a tree node
class Node
{
    constructor(data)
    {
        this.data=data;
        this.left=this.right=null;
    }
}
 
// Function to check If the tree
// is uni-valued or not
function isUnivalTree(root)
{
    // If tree is an empty tree
    if (root == null)
    {
        return true;
    }
  
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.left != null
        && root.data != root.left.data)
        return false;
  
    // If all the nodes on the left subtree
    // have not value equal to root node
    if (root.right != null
        && root.data != root.right.data)
        return false;
  
    // Recurse on left and right subtree
    return isUnivalTree(root.left)
           && isUnivalTree(root.right);
}
 
// Driver Code
/*
                1
              /   \
             1     1
           /  \     \
          1    1     1
    */
let root = new Node(1);
root.left = new Node(1);
root.right = new Node(1);
root.left.left = new Node(1);
root.left.right = new Node(1);
root.right.right = new Node(1);
 
if (isUnivalTree(root))
{
    document.write("YES");
}
else
{
    document.write("NO");
}
 
 
// This code is contributed by unknown2108
 
</script>
Output: 
YES

 

Time complexity: O(N) 
Auxiliary Space: O(1)

BFS-based Approach: The idea is to traverse the tree using BFS and check if every node of the binary tree have a value equal to the root node of the binary tree or not. If found to be true, then print “YES”. Otherwise, print “NO”. Follow the steps below to solve the problem:

  • Initialize a queue to traverse the binary tree using BFS.
  • Insert the root node of the binary tree into the queue.
  • Insert the left subtree of the tree into queue and check if value of front element of the queue equal to the value of current traversed node of the tree or not. If found to be false, then print “NO”.
  • Insert the right subtree of the tree into queue and check if value of front element of the queue equal to the value of current traversed node of the tree or not. If found to be false, then print “NO”.
  • Otherwise, If all the nodes of the tree are traversed and value of each node equal to the value of root node, then print “YES”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a tree node
struct Node {
    int data;
    Node* left;
    Node* right;
};
 
// Function to insert a new node
// in a binary tree
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to check If the tree
// is univalued or not
bool isUnivalTree(Node* root)
{
 
    // If tree is an empty tree
    if (!root) {
        return true;
    }
 
    // Store nodes at each level
    // of the tree
    queue<Node*> q;
 
    // Insert root node
    q.push(root);
 
    // Stores value of root node
    int rootVal = root->data;
 
    // Traverse the tree using BFS
    while (!q.empty()) {
 
        // Stores front element
        // of the queue
        Node* currRoot = q.front();
 
        // If value of  traversed node
        // not equal to value of root node
        if (currRoot->data != rootVal) {
            return false;
        }
 
        // If left subtree is not NULL
        if (currRoot->left) {
 
            // Insert left subtree
            q.push(currRoot->left);
        }
 
        // If right subtree is not NULL
        if (currRoot->right) {
 
            // Insert right subtree
            q.push(currRoot->right);
        }
 
        // Remove front element
        // of the queue
        q.pop();
    }
 
    return true;
}
 
// Driver Code
int main()
{
 
    /*
                1
              /   \
             1     1
           /  \     \
          1    1     1
    */
    Node* root = newNode(1);
    root->left = newNode(1);
    root->right = newNode(1);
    root->left->left = newNode(1);
    root->left->right = newNode(1);
    root->right->right = newNode(1);
 
    if (isUnivalTree(root) == 1) {
 
        cout << "YES";
    }
    else {
 
        cout << "NO";
    }
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Structure of a tree node
    static class Node {
        int data;
        Node left;
        Node right;
    };
 
    // Function to insert a new node
    // in a binary tree
    static Node newNode(int data)
    {
        Node temp = new Node();
        temp.data = data;
        temp.left = temp.right = null;
        return (temp);
    }
 
    // Function to check If the tree
    // is univalued or not
    static boolean isUnivalTree(Node root)
    {
 
        // If tree is an empty tree
        if (root == null) {
            return true;
        }
 
        // Store nodes at each level
        // of the tree
        Queue<Node> q = new LinkedList<>();
 
        // Insert root node
        q.add(root);
 
        // Stores value of root node
        int rootVal = root.data;
 
        // Traverse the tree using BFS
        while (!q.isEmpty()) {
 
            // Stores front element
            // of the queue
            Node currRoot = q.peek();
 
            // If value of  traversed node
            // not equal to value of root node
            if (currRoot.data != rootVal) {
                return false;
            }
 
            // If left subtree is not NULL
            if (currRoot.left != null) {
 
                // Insert left subtree
                q.add(currRoot.left);
            }
 
            // If right subtree is not NULL
            if (currRoot.right != null) {
 
                // Insert right subtree
                q.add(currRoot.right);
            }
 
            // Remove front element
            // of the queue
            q.remove();
        }
 
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        /*
                    1
                  /   \
                 1     1
               /  \     \
              1    1     1
        */
        Node root = newNode(1);
        root.left = newNode(1);
        root.right = newNode(1);
        root.left.left = newNode(1);
        root.left.right = newNode(1);
        root.right.right = newNode(1);
 
        if (isUnivalTree(root)) {
            System.out.print("YES");
        }
        else {
            System.out.print("NO");
        }
    }
}
 
// This code is contributed by Dharanendra L V.

Python3




# Python program for the above approach
 
# Structure of a tree node
class node:
     
    # Function to insert a new node
    # in a binary tree
    def __init__(self, x):
        
        self.data = x
        self.left = None
        self.right = None
 
# Function to check If the tree
# is univalued or not
def isUnivalTree(root):
     
    # If tree is an empty tree
    if(root == None):
        return True
     
    # Store nodes at each level
    # of the tree
    q = []
     
    # Insert root node
    q.append(root)
     
    # Stores value of root node
    rootVal = root.data
     
    # Traverse the tree using BFS
    while(len(q) != 0):
         
        # Stores front element
        # of the queue
        currRoot = q[0]
         
        # If value of  traversed node
        # not equal to value of root node
        if (currRoot.data != rootVal):
            return False
         
        # If left subtree is not NULL
        if (currRoot.left != None):
             
            # Insert left subtree
            q.append(currRoot.left)
         
        # If right subtree is not NULL
        if(currRoot.right != None):
             
            # Insert right subtree
            q.append(currRoot.right)
         
        # Remove front element
        # of the queue
        q.pop(0)
     
    return True
 
# Driver Code
if __name__ == '__main__':
     
    #
    #                1
    #              /   \
    #             1     1
    #           /  \     \
    #          1    1     1
         
    root=node(1)
    root.left= node(1)
    root.right = node(1)
    root.left.left = node(1)
    root.left.right = node(1)
    root.right.right = node(1)
     
    if(isUnivalTree(root)):
        print("YES")
    else:
        print("NO")
 
# This code is contributed by avanitrachhadiya2155

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
 
  // Structure of a tree node
  class Node
  {
    public int data;
    public Node left;
    public Node right;
  };
 
  // Function to insert a new node
  // in a binary tree
  static Node newNode(int data)
  {
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return (temp);
  }
 
  // Function to check If the tree
  // is univalued or not
  static bool isUnivalTree(Node root)
  {
 
    // If tree is an empty tree
    if (root == null)
    {
      return true;
    }
 
    // Store nodes at each level
    // of the tree
    Queue<Node> q = new Queue<Node>();
 
    // Insert root node
    q.Enqueue(root);
 
    // Stores value of root node
    int rootVal = root.data;
 
    // Traverse the tree using BFS
    while (q.Count != 0)
    {
 
      // Stores front element
      // of the queue
      Node currRoot = q.Peek();
 
      // If value of  traversed node
      // not equal to value of root node
      if (currRoot.data != rootVal)
      {
        return false;
      }
 
      // If left subtree is not NULL
      if (currRoot.left != null)
      {
 
        // Insert left subtree
        q.Enqueue(currRoot.left);
      }
 
      // If right subtree is not NULL
      if (currRoot.right != null)
      {
 
        // Insert right subtree
        q.Enqueue(currRoot.right);
      }
 
      // Remove front element
      // of the queue
      q.Dequeue();
    }
 
    return true;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    /*
                    1
                  /   \
                 1     1
               /  \     \
              1    1     1
        */
    Node root = newNode(1);
    root.left = newNode(1);
    root.right = newNode(1);
    root.left.left = newNode(1);
    root.left.right = newNode(1);
    root.right.right = newNode(1);
 
    if (isUnivalTree(root))
    {
      Console.Write("YES");
    }
    else
    {
      Console.Write("NO");
    }
  }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
// Javascript program for the above approach
 
    // Structure of a tree node
class Node
{
    // Function to insert a new node
    // in a binary tree
    constructor(data)
    {
        this.data=data;
        this.left=this.right=null;
    }
}
 
// Function to check If the tree
    // is univalued or not
function isUnivalTree(root)
{
    // If tree is an empty tree
        if (root == null) {
            return true;
        }
  
        // Store nodes at each level
        // of the tree
        let q = [];
  
        // Insert root node
        q.push(root);
  
        // Stores value of root node
        let rootVal = root.data;
  
        // Traverse the tree using BFS
        while (q.length!=0) {
  
            // Stores front element
            // of the queue
            let currRoot = q[0];
  
            // If value of  traversed node
            // not equal to value of root node
            if (currRoot.data != rootVal) {
                return false;
            }
  
            // If left subtree is not NULL
            if (currRoot.left != null) {
  
                // Insert left subtree
                q.push(currRoot.left);
            }
  
            // If right subtree is not NULL
            if (currRoot.right != null) {
  
                // Insert right subtree
                q.push(currRoot.right);
            }
  
            // Remove front element
            // of the queue
            q.shift();
        }
  
        return true;
}
 
 // Driver Code
 /*
                    1
                  /   \
                 1     1
               /  \     \
              1    1     1
        */
        let root = new Node(1);
        root.left = new Node(1);
        root.right = new Node(1);
        root.left.left = new Node(1);
        root.left.right = new Node(1);
        root.right.right = new Node(1);
  
        if (isUnivalTree(root)) {
            document.write("YES");
        }
        else {
            document.write("NO");
        }
 
 
 
// This code is contributed by patel2127
</script>
Output: 
YES

 

Time complexity: O(N) 
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!