Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if the given number K is enough to reach the end of an array

  • Difficulty Level : Easy
  • Last Updated : 05 May, 2021

Given an array arr[] of n elements and a number K. The task is to determine if it is possible to reach the end of the array by doing the below operations:
Traverse the given array and, 

  • If any element is found to be non-prime then decrement the value of K by 1.
  • If any element is prime then refill the value of K to its initial value.

If it is possible to reach the end of array with (K > 0), then print YES otherwise print NO.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples



Input : K = 2, arr[]={ 6, 3, 4, 5, 6};
Output : Yes
Explanation :
 1- arr[0] is not prime, so K = K-1 = 1
 2- arr[1] is prime so K will be refilled to its 
    initial value. Therefore,  K = 2.
 3- arr[2] is not prime.
    Therefore,  K = 2-1 = 1
 4- arr[3] is prime so K will be refilled to its 
    initial value. Therefore,  K = 2.
 5- arr[4] is not prime.
    Therefore,  K = 2-1 = 1
 6- Since the end of the array is reached with K>=0
    So output is YES

Input :  k=3, arr[]={ 1, 2, 10, 4, 6, 8};
Output : No

Recommended: Please solve it on “PRACTICE “first, before moving on to the solution.

Simple Approach

  • Traverse each element of the array and Check if the value of the current element is prime or not.
  • If it is Prime then refill the power of K else decrements by 1.
  • If it is possible to reach the end of the array with (K > 0) then print “YES” otherwise “NO”.

Below is the implementation of the above approach: 

C++




// C++ program to check if it is possible
// to reach the end of the array
#include <iostream>
using namespace std;
 
// Function To check number is prime or not
bool is_Prime( int num )
{
    // because 1 is not prime
    if(num == 1)
    return false;
     
    for(int i=2 ; i*i <= num ; i++ )
    {
        if( num % i == 0 )
        return false;
    }
     
return true;
}
 
// Function to check whether it is possible
// to reach the end of the array or not    
bool isReachable( int arr[] , int n , int k)
{  
    // store initial value of K
    int x = k ;
             
    for(int i=0 ; i < n ; i++ )
    {
        // Call is_prime function to
        // check if a number is prime.
        if( is_Prime(arr[i]) )
        {
            // Refill K to initial value
            k = x;
        }                
        else
        {
            // Decrement k by 1
            k-- ;                
        }
 
     
        if( k <= 0 && i < (n-1) && (!is_Prime(arr[i+1])) )
            return false ;
    }
             
    return true ;
}
 
// Driver Code
int main()
{
    int arr[] = { 6, 3, 4, 5, 6};
    int n = sizeof(arr)/sizeof(arr[0]) ;
    int k = 2 ;
 
         
    isReachable( arr , n , k ) ? cout << "Yes" << endl :
                                    cout << "No" << endl ;
         
    return 0 ;
}

Java




// Java program to check if
// it is possible to reach
// the end of the array
import java.io.*;
import java.util.*;
import java.lang.*;
 
class GFG
{
     
// Function To check
// number is prime or not
static boolean is_Prime(int num)
{
    // because 1 is not prime
    if(num == 1)
    return false;
     
    for(int i = 2 ;
            i * i <= num ; i++ )
    {
        if(num % i == 0)
        return false;
    }
     
return true;
}
 
// Function to check whether
// it is possible to reach
// the end of the array or not    
static boolean isReachable(int arr[] ,
                           int n , int k)
{
    // store initial value of K
    int x = k ;
             
    for(int i = 0 ; i < n ; i++ )
    {
        // Call is_prime function to
        // check if a number is prime.
        if(is_Prime(arr[i]))
        {
            // Refill K to
            // initial value
            k = x;
        }                
        else
        {
            // Decrement k by 1
            k-- ;                
        }
 
     
        if(k <= 0 && i < (n - 1) &&
          (is_Prime(arr[i + 1]) != true))
            return false ;
    }
             
    return true ;
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = new int[]{ 6, 3, 4, 5, 6};
    int n = arr.length;
    int k = 2 ;
 
    if(isReachable(arr, n, k) == true)
        System.out.print("Yes" + "\n");
     else
        System.out.print("No" + "\n");
}
}

Python3




# Python 3 program to check if it is
# possible to reach the end of the array
from math import sqrt
 
# Function To check number is prime or not
def is_Prime(num):
     
    # because 1 is not prime
    if(num == 1):
        return False
    k = int(sqrt(num)) + 1
 
    for i in range(2, k, 1):
        if(num % i == 0):
            return False
             
    return True
 
# Function to check whether it is possible
# to reach the end of the array or not
def isReachable(arr, n , k):
     
    # store initial value of K
    x = k
             
    for i in range(0, n, 1):
         
        # Call is_prime function to
        # check if a number is prime.
        if( is_Prime(arr[i])):
             
            # Refill K to initial value
            k = x    
        else:
             
            # Decrement k by 1
            k -= 1       
     
        if(k <= 0 and i < (n - 1) and
          (is_Prime(arr[i + 1])) == False):
            return False
             
    return True
 
# Driver Code
if __name__ == '__main__':
    arr = [6, 3, 4, 5, 6]
    n = len(arr)
    k = 2
 
    if (isReachable( arr , n , k )):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by
# Sahil_Shelangia

C#




// C# program to check if
// it is possible to reach
// the end of the array
using System;
 
class GFG
{
     
// Function To check
// number is prime or not
static bool is_Prime(int num)
{
    // because 1 is not prime
    if(num == 1)
    return false;
     
    for(int i = 2 ;
            i * i <= num ; i++ )
    {
        if(num % i == 0)
        return false;
    }
     
return true;
}
 
// Function to check whether
// it is possible to reach
// the end of the array or not
static bool isReachable(int []arr ,
                        int n , int k)
{
    // store initial
    // value of K
    int x = k ;
             
    for(int i = 0 ; i < n ; i++ )
    {
        // Call is_prime function
        // to check if a number
        // is prime.
        if(is_Prime(arr[i]))
        {
            // Refill K to
            // initial value
            k = x;
        }            
        else
        {
            // Decrement k by 1
            k-- ;            
        }
 
     
        if(k <= 0 && i < (n - 1) &&
        (is_Prime(arr[i + 1]) != true))
            return false ;
    }
             
    return true ;
}
 
// Driver Code
public static void Main()
{
    int []arr = new int[]{ 6, 3, 4, 5, 6};
    int n = arr.Length;
    int k = 2 ;
 
    if(isReachable(arr, n, k) == true)
        Console.WriteLine("Yes" + "\n");
    else
        Console.WriteLine("No" + "\n");
}
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to check if it is possible
// to reach the end of the array
 
// Function To check number
// is prime or not
function is_Prime($num )
{
    // because 1 is not prime
    if($num == 1)
    return false;
     
    for($i = 2 ; ($i * $i) <= $num ; $i++ )
    {
        if($num % $i == 0)
        return false;
    }
     
    return true;
}
 
// Function to check whether it is possible
// to reach the end of the array or not
function isReachable($arr , $n , $k)
{
    // store initial value of K
    $x = $k ;
             
    for($i = 0 ; $i < $n ; $i++)
    {
        // Call is_prime function to
        // check if a number is prime.
        if(is_Prime($arr[$i]))
        {
            // Refill K to initial value
            $k = $x;
        }            
        else
        {
            // Decrement k by 1
            $k-- ;            
        }
 
     
        if($k <= 0 && $i < ($n - 1) &&
            (!is_Prime($arr[$i + 1])))
            return false ;
    }
             
    return true ;
}
 
// Driver Code
$arr = array(6, 3, 4, 5, 6);
$n = sizeof($arr);
$k = 2;
 
if(isReachable( $arr , $n , $k ))
    echo "Yes";
else
    echo "No" ;
     
// This code is contributed
// by Sach_Code
?>

Javascript




<script>
 
// Javascript program to check if
// it is possible to reach
// the end of the array
 
// Function To check
// number is prime or not
function is_Prime(num)
{
     
    // Because 1 is not prime
    if(num == 1)
        return false;
 
    for(let i = 2; i * i <= num; i++)
    {
        if(num % i == 0)
            return false;
    }
    return true;
}
 
// Function to check whether
// it is possible to reach
// the end of the array or not
function isReachable(arr, n, k)
{
     
    // Store initial
    // value of K
    let x = k ;
 
    for(let i = 0 ; i < n ; i++ )
    {
         
        // Call is_prime function
        // to check if a number
        // is prime.
        if (is_Prime(arr[i]))
        {
             
            // Refill K to
            // initial value
            k = x;
        }           
        else
        {
             
            // Decrement k by 1
            k-- ;           
        }
         
        if (k <= 0 && i < (n - 1) &&
           (is_Prime(arr[i + 1]) != true))
            return false;
    }
    return true;
}
 
// Driver code
let arr = [ 6, 3, 4, 5, 6 ];
let n = arr.length;
let k = 2 ;
 
if (isReachable(arr, n, k) == true)
    document.write("Yes" + "</br>");
else
    document.write("No" + "</br>");
     
// This code is contributed by decode2207
 
</script>
Output: 
Yes

 

Time complexity: O(N(sqrt N))

Efficient Approach: The above approach can be optimized by using the Sieve of Eratosthenes to check if a number is prime or not.

Below is the implementation of the efficient approach: 

C++




// C++ program to check if it is possible
// to reach the end of the array
#include <iostream>
#define MAX 1000000
using namespace std;
 
// Function for Sieve of Eratosthenes
void SieveOfEratosthenes( int sieve[], int max )
{  
    for(int i=0; i<max; i++)
        sieve[i] = 1;
         
    for(int i=2 ; i*i <= max ; i++ )
    {
        if( sieve[i] == 1 )
        {
            for( int j=i*2 ; j <= max ; j+=i )
                sieve[ j ] = 0;
        }
    }
}
 
// Function to check if it is possible to
// reach end of the array    
bool isReachable( int arr[] , int n , int sieve[] , int k)
{  
    // store initial value of K
    int x = k;
     
    for(int i=0 ; i < n ; i++ )
    {  
        if( sieve[arr[i]] )
        {  
            // Refill K to initial value
            k = x;
        }                
         else
        {
            // Decrement k by 1
            k -= 1;                
        }
 
         
        if((k <= 0) && (i < (n-1)) &&
                        (sieve[arr[i+1]] == 0))
        {
            return false ;  
        }              
    }
             
    return true ;
}
 
// Driver Code
int main()
{
    int arr[] = {6, 3, 4, 5, 6};
     
    int sieve[MAX];
     
    int n = sizeof(arr)/sizeof(arr[0]) ;
     
    int k = 2;
         
 
    SieveOfEratosthenes(sieve, MAX) ;
 
    isReachable( arr , n , sieve , k ) ? cout << "Yes" << endl :
                                            cout << "No" << endl ;
 
    return 0 ;
}

Java




// Java program to check if it is possible
// to reach the end of the array
class GFG
{
 
    static int MAX = 1000000;
 
    // Function for Sieve of Eratosthenes
    static void SieveOfEratosthenes(int sieve[], int max)
    {
        for (int i = 0; i < max; i++)
        {
            sieve[i] = 1;
        }
 
        for (int i = 2; i * i < max; i++)
        {
            if (sieve[i] == 1)
            {
                for (int j = i * 2; j < max; j += i)
                {
                    sieve[j] = 0;
                }
            }
        }
    }
 
    // Function to check if it is possible to
    // reach end of the array    
    static boolean isReachable(int arr[], int n,
                                int sieve[], int k)
    {
        // store initial value of K
        int x = k;
 
        for (int i = 0; i < n; i++)
        {
            if (sieve[arr[i]] == 1)
            {
                // Refill K to initial value
                k = x;
            }
            else
            {
                // Decrement k by 1
                k -= 1;
            }
 
            if ((k <= 0) && (i < (n - 1))
                    && (sieve[arr[i + 1]] == 0))
            {
                return false;
            }
        }
 
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = {6, 3, 4, 5, 6};
        int[] sieve = new int[MAX];
        int n = arr.length;
        int k = 2;
 
        SieveOfEratosthenes(sieve, MAX);
 
        if (isReachable(arr, n, sieve, k))
        {
            System.out.println("Yes");
        }
        else
        {
            System.out.println("No");
        }
    }
}
 
/* This code contributed by PrinciRaj1992 */

Python3




# Python3 program to check if it is
# possible to reach the end of the
# array
import math
 
# Function for Sieve of Eratosthenes
def SieveOfEratosthenes(sieve, max):
     
    for i in range(0, max):
        sieve[i] = 1
         
    sqt = int(math.sqrt(max))
     
    for i in range(2, sqt):
        if (sieve[i] == 1):
            for j in range(i * 2, max, i):
                sieve[j] = 0
 
# Function to check if it is possible to
# reach end of the array    
def isReachable(arr, n, sieve, k):
     
    # store initial value of K
    x = k
    for i in range(0, n):
        if (sieve[arr[i]] != 0):
             
            # Refill K to initial value
            k = x       
        else:
             
            # Decrement k by 1
            k -= 1
        if ((k <= 0) and (i < (n - 1)) and
           (sieve[arr[i + 1]] == 0)):
            return 0
             
    return 1
 
# Driver Code
arr = [ 6, 3, 4, 5, 6 ]
sieve = [0 for x in range(1000000)]
 
n = len(arr)
k = 2
 
SieveOfEratosthenes(sieve, 1000000)
 
ch = isReachable(arr, n, sieve, k)
 
if (ch):
    print("Yes")
else:
    print("No")
     
# This code is contributed by Stream_Cipher

C#




// C# program to check if it is possible
// to reach the end of the array
using System;
 
class GFG
{
    static int MAX = 1000000;
 
    // Function for Sieve of Eratosthenes
    static void SieveOfEratosthenes(int []sieve, int max)
    {
        for (int i = 0; i < max; i++)
        {
            sieve[i] = 1;
        }
 
        for (int i = 2; i * i < max; i++)
        {
            if (sieve[i] == 1)
            {
                for (int j = i * 2; j < max; j += i)
                {
                    sieve[j] = 0;
                }
            }
        }
    }
 
    // Function to check if it is possible to
    // reach end of the array
    static bool isReachable(int []arr, int n,
                                int []sieve, int k)
    {
        // store initial value of K
        int x = k;
 
        for (int i = 0; i < n; i++)
        {
            if (sieve[arr[i]] == 1)
            {
                // Refill K to initial value
                k = x;
            }
            else
            {
                // Decrement k by 1
                k -= 1;
            }
 
            if ((k <= 0) && (i < (n - 1))
                    && (sieve[arr[i + 1]] == 0))
            {
                return false;
            }
        }
 
        return true;
    }
 
    // Driver Code
    static public void Main ()
    {
        int []arr = {6, 3, 4, 5, 6};
        int[] sieve = new int[MAX];
        int n = arr.Length;
        int k = 2;
 
        SieveOfEratosthenes(sieve, MAX);
 
        if (isReachable(arr, n, sieve, k))
        {
            Console.WriteLine("Yes");
        }
        else
        {
            Console.WriteLine("No");
        }
    }
}
 
/* This code contributed by ajit. */

Javascript




<script>
    // Javascript program to check if it is possible
    // to reach the end of the array
     
    let MAX = 1000000;
  
    // Function for Sieve of Eratosthenes
    function SieveOfEratosthenes(sieve, max)
    {
        for (let i = 0; i < max; i++)
        {
            sieve[i] = 1;
        }
  
        for (let i = 2; i * i < max; i++)
        {
            if (sieve[i] == 1)
            {
                for (let j = i * 2; j < max; j += i)
                {
                    sieve[j] = 0;
                }
            }
        }
    }
  
    // Function to check if it is possible to
    // reach end of the array
    function isReachable(arr, n, sieve, k)
    {
        // store initial value of K
        let x = k;
  
        for (let i = 0; i < n; i++)
        {
            if (sieve[arr[i]] == 1)
            {
                // Refill K to initial value
                k = x;
            }
            else
            {
                // Decrement k by 1
                k -= 1;
            }
  
            if ((k <= 0) && (i < (n - 1)) && (sieve[arr[i + 1]] == 0))
            {
                return false;
            }
        }
  
        return true;
    }
     
    let arr = [6, 3, 4, 5, 6];
    let sieve = new Array(MAX);
    let n = arr.length;
    let k = 2;
 
    SieveOfEratosthenes(sieve, MAX);
 
    if (isReachable(arr, n, sieve, k))
    {
      document.write("Yes");
    }
    else
    {
      document.write("No");
    }
 
</script>
Output: 
Yes

 

Time complexity: O(? Max * loglog(Max)) + O(n) 
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!