Check if a given matrix is Hankel or not

Given a matrix m[][] of size n x n. The task is to check whether given matrix is Hankel Matrix or not.

In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant.

Examples:



Input : n = 4,
m[][] = {
{1, 2, 3, 5},
{2, 3, 5, 8},
{3, 5, 8, 0},
{5, 8, 0, 9}
};
Output : Yes
All diagonal {1}, {2, 2}, {3, 3, 3}, {5, 5, 5, 5}, {8, 8, 8}, {9} have constant value.
So given matrix is Hankel Matrix.

Input : n = 3,
m[][] = {
{1, 2, 3},
{2, 3, 5},
{3, 9, 8}
};
Output : No

Observe, for a matrix to be Hankel Matrix, it must be of the form,

a0  a1  a2  a3
a1  a2  a3  a4
a2  a3  a4  a5
a3  a4  a5  a6

Therefore, to check if the given matrix is Hankel Matrix, we need check if each m[i][j] == ai + j. Now, ai + j can be define as:

         m[i+j][0], if i + j < n
ai + j = 
         m[i + j - n + 1][n-1], otherwise

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to check if given matrix is
// Hankel Matrix or not.
#include <bits/stdc++.h>
using namespace std;
#define N 4
  
// Function to check if given matrix is Hankel
// Matrix or not.
bool checkHankelMatrix(int n, int m[N][N])
{
    // for each row
    for (int i = 0; i < n; i++) {
  
        // for each column
        for (int j = 0; j < n; j++) {
  
            // checking if i + j is less than n
            if (i + j < n) {
  
                // checking if the element is equal to the
                // corresponding diagonal constant
                if (m[i][j] != m[i + j][0])
                    return false;
            }
            else {
  
                // checking if the element is equal to the
                // corresponding diagonal constant
                if (m[i][j] != m[i + j - n + 1][n - 1])
                    return false;
            }
        }
    }
  
    return true;
}
  
// Drivers code
int main()
{
    int n = 4;
    int m[N][N] = {
        { 1, 2, 3, 5 },
        { 2, 3, 5, 8 },
        { 3, 5, 8, 0 },
        { 5, 8, 0, 9 }
    };
  
    checkHankelMatrix(n, m) ? (cout << "Yes"
                            : (cout << "No");
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to check if given matrix is
// Hankel Matrix or not.
import java.io.*;
import java.util.*;
  
class GFG {
  
    // Function to check if given matrix 
    // is Hankel Matrix or not.
    static boolean checkHankelMatrix(int n,
                                 int m[][])
    {
        // for each row
        for (int i = 0; i < n; i++) {
      
            // for each column
            for (int j = 0; j < n; j++) {
      
                // checking if i + j is less
                // than n
                if (i + j < n) {
      
                    // checking if the element
                    // is equal to the
                    // corresponding diagonal
                    // constant
                    if (m[i][j] != m[i + j][0])
                        return false;
                }
                else {
      
                    // checking if the element
                    // is equal to the
                    // corresponding diagonal
                    // constant
                    if (m[i][j] != 
                       m[i + j - n + 1][n - 1])
                        return false;
                }
            }
        }
      
        return true;
    }
      
    // Drivers code
    public static void main(String args[])
    {
        int n = 4;
        int m[][] = {
            { 1, 2, 3, 5 },
            { 2, 3, 5, 8 },
            { 3, 5, 8, 0 },
            { 5, 8, 0, 9 }
        };
      
        if(checkHankelMatrix(n, m)) 
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
  
// This code is contributed by Anuj_67.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to check if given matrix is
# Hankel Matrix or not.
  
N = 4
  
# Function to check if given matrix is Hankel
# Matrix or not.
def checkHankelMatrix(n, m):
  
    # for each row
    for i in range( 0, n):
  
        # for each column
        for j in range( 0, n): 
  
            # checking if i + j is less
            # than n
            if (i + j < n):
  
                # checking if the element is
                # equal to the corresponding
                # diagonal constant
                if (m[i][j] != m[i + j][0]):
                    return False
              
            else :
  
                # checking if the element is
                # equal to the corresponding
                # diagonal constant
                if (m[i][j] != 
                    m[i + j - n + 1][n - 1]):
                    return False
              
    return True
  
# Drivers code
n = 4
m =[[1, 2, 3, 5,],
    [2, 3, 5, 8,],
    [3, 5, 8, 0,],
    [5, 8, 0, 9]] 
(print("Yes") if checkHankelMatrix(n, m)
                      else print("No"))
  
# This code is contributed by Smitha.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to check if given matrix is
// Hankel Matrix or not.
using System;
  
class GFG {
  
    // Function to check if given matrix 
    // is Hankel Matrix or not.
    static bool checkHankelMatrix(int n,
                                int [,]m)
    {
        // for each row
        for (int i = 0; i < n; i++) {
      
            // for each column
            for (int j = 0; j < n; j++) {
      
                // checking if i + j is less
                // than n
                if (i + j < n) {
      
                    // checking if the element
                    // is equal to the
                    // corresponding diagonal
                    // constant
                    if (m[i, j] != m[i + j, 0])
                        return false;
                }
                else {
      
                    // checking if the element
                    // is equal to the
                    // corresponding diagonal
                    // constant
                    if (m[i,j] != m[i + j - n 
                                  + 1, n - 1])
                        return false;
                }
            }
        }
      
        return true;
    }
      
    // Drivers code
    public static void Main()
    {
        int n = 4;
        int [,]m = {
            { 1, 2, 3, 5 },
            { 2, 3, 5, 8 },
            { 3, 5, 8, 0 },
            { 5, 8, 0, 9 }
        };
      
        if(checkHankelMatrix(n, m)) 
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
  
// This code is contributed by Anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to check if given matrix is
// Hankel Matrix or not.
$N = 4;
  
// Function to check if 
// given matrix is Hankel
// Matrix or not.
function checkHankelMatrix( $n, $m)
{
      
    // for each row
    for($i = 0; $i < $n; $i++) {
  
        // for each column
        for ($j = 0;$j < $n; $j++) {
  
            // checking if i + j
            // is less than n
            if ($i + $j < $n) {
  
                // checking if the element
                // is equal to the corresponding 
                // diagonal constant
                if ($m[$i][$j] != $m[$i + $j][0])
                    return false;
            }
            else {
  
                // checking if the element
                // is equal to the
                // corresponding diagonal constant
                if ($m[$i][$j] != $m[$i + $j
                             $n + 1][$n - 1])
                    return false;
            }
        }
    }
  
    return true;
}
  
    // Driver code
    $n = 4;
    $m = array(array( 1, 2, 3, 5 ),
               array( 2, 3, 5, 8 ),
               array( 3, 5, 8, 0 ),
               array( 5, 8, 0, 9 ));
    if(checkHankelMatrix($n, $m))
        echo "Yes";
    else
        echo "No";
  
// This code is contributed by Anuj_67.
?>

chevron_right


Output:

Yes

Complexity : O(n + n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Smitha Dinesh Semwal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.