Open In App

Check if a given graph is tree or not

Improve
Improve
Like Article
Like
Save
Share
Report

Write a function that returns true if a given undirected graph is a tree and false otherwise. For example, the following graph is a tree.
 

cycleGraph

But the following graph is not a tree. 
 

cycleGraph

Approach 1:

An undirected graph is a tree if it has the following properties. 

  1. There is no cycle. 
  2. The graph is connected.

For an undirected graph, we can either use BFS or DFS to detect the above two properties.

How to detect cycles in an undirected graph? 
We can either use BFS or DFS. For every visited vertex ‘v’, if there is an adjacent ‘u’ such that u is already visited and u is not the parent of v, then there is a cycle in the graph. If we don’t find such an adjacent for any vertex, we say that there is no cycle (See Detect cycle in an undirected graph for more details).

How to check for connectivity? 
Since the graph is undirected, we can start BFS or DFS from any vertex and check if all vertices are reachable or not. If all vertices are reachable, then the graph is connected, otherwise not.
Implementation: 

C++




// A C++ Program to check whether a graph is tree or not
#include<iostream>
#include <list>
#include <limits.h>
using namespace std;
 
// Class for an undirected graph
class Graph
{
    int V;    // No. of vertices
    list<int> *adj; // Pointer to an array for adjacency lists
    bool isCyclicUtil(int v, bool visited[], int parent);
public:
    Graph(int V);   // Constructor
    void addEdge(int v, int w);   // to add an edge to graph
    bool isTree();   // returns true if graph is tree
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
    adj[w].push_back(v); // Add v to w’s list.
}
 
// A recursive function that uses visited[] and parent to
// detect cycle in subgraph reachable from vertex v.
bool Graph::isCyclicUtil(int v, bool visited[], int parent)
{
    // Mark the current node as visited
    visited[v] = true;
 
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
    {
        // If an adjacent is not visited, then recur for
        // that adjacent
        if (!visited[*i])
        {
           if (isCyclicUtil(*i, visited, v))
              return true;
        }
 
        // If an adjacent is visited and not parent of current
        // vertex, then there is a cycle.
        else if (*i != parent)
           return true;
    }
    return false;
}
 
// Returns true if the graph is a tree, else false.
bool Graph::isTree()
{
    // Mark all the vertices as not visited and not part of
    // recursion stack
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // The call to isCyclicUtil serves multiple purposes.
    // It returns true if graph reachable from vertex 0
    // is cyclic. It also marks all vertices reachable
    // from 0.
    if (isCyclicUtil(0, visited, -1))
             return false;
 
    // If we find a vertex which is not reachable from 0
    // (not marked by isCyclicUtil(), then we return false
    for (int u = 0; u < V; u++)
        if (!visited[u])
           return false;
 
    return true;
}
 
// Driver program to test above functions
int main()
{
    Graph g1(5);
    g1.addEdge(1, 0);
    g1.addEdge(0, 2);
    g1.addEdge(0, 3);
    g1.addEdge(3, 4);
    g1.isTree()? cout << "Graph is Tree\n":
                 cout << "Graph is not Tree\n";
 
    Graph g2(5);
    g2.addEdge(1, 0);
    g2.addEdge(0, 2);
    g2.addEdge(2, 1);
    g2.addEdge(0, 3);
    g2.addEdge(3, 4);
    g2.isTree()? cout << "Graph is Tree\n":
                 cout << "Graph is not Tree\n";
 
    return 0;
}


Java




// A Java Program to check whether a graph is tree or not
import java.io.*;
import java.util.*;
 
// This class represents a directed graph using adjacency
// list representation
class Graph
{
    private int V; // No. of vertices
    private LinkedList<Integer> adj[]; //Adjacency List
 
    // Constructor
   
    @SuppressWarnings("unchecked")
    Graph(int v)
    {
        V = v;
        adj = new LinkedList[V];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList<Integer>();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v,int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }
 
    // A recursive function that uses visited[] and parent
    // to detect cycle in subgraph reachable from vertex v.
    boolean isCyclicUtil(int v, boolean visited[], int parent)
    {
        // Mark the current node as visited
        visited[v] = true;
        Integer i;
 
        // Recur for all the vertices adjacent to this vertex
        Iterator<Integer> it = adj[v].iterator();
        while (it.hasNext())
        {
            i = it.next();
 
            // If an adjacent is not visited, then recur for
            // that adjacent
            if (!visited[i])
            {
                if (isCyclicUtil(i, visited, v))
                    return true;
            }
 
            // If an adjacent is visited and not parent of
            // current vertex, then there is a cycle.
            else if (i != parent)
            return true;
        }
        return false;
    }
 
    // Returns true if the graph is a tree, else false.
    boolean isTree()
    {
        // Mark all the vertices as not visited and not part
        // of recursion stack
        boolean visited[] = new boolean[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // The call to isCyclicUtil serves multiple purposes
        // It returns true if graph reachable from vertex 0
        // is cyclic. It also marks all vertices reachable
        // from 0.
        if (isCyclicUtil(0, visited, -1))
            return false;
 
        // If we find a vertex which is not reachable from 0
        // (not marked by isCyclicUtil(), then we return false
        for (int u = 0; u < V; u++)
            if (!visited[u])
                return false;
 
        return true;
    }
 
    // Driver method
    public static void main(String args[])
    {
        // Create a graph given in the above diagram
        Graph g1 = new Graph(5);
        g1.addEdge(1, 0);
        g1.addEdge(0, 2);
        g1.addEdge(0, 3);
        g1.addEdge(3, 4);
        if (g1.isTree())
            System.out.println("Graph is Tree");
        else
            System.out.println("Graph is not Tree");
 
        Graph g2 = new Graph(5);
        g2.addEdge(1, 0);
        g2.addEdge(0, 2);
        g2.addEdge(2, 1);
        g2.addEdge(0, 3);
        g2.addEdge(3, 4);
 
        if (g2.isTree())
            System.out.println("Graph is Tree");
        else
            System.out.println("Graph is not Tree");
 
    }
}
// This code is contributed by Aakash Hasija


Python3




# Python Program to check whether
# a graph is tree or not
 
from collections import defaultdict
 
class Graph():
 
    def __init__(self, V):
        self.V = V
        self.graph  = defaultdict(list)
 
    def addEdge(self, v, w):
        # Add w to v ist.
        self.graph[v].append(w)
        # Add v to w list.
        self.graph[w].append(v)
 
    # A recursive function that uses visited[]
    # and parent to detect cycle in subgraph
    # reachable from vertex v.
    def isCyclicUtil(self, v, visited, parent):
 
        # Mark current node as visited
        visited[v] = True
 
        # Recur for all the vertices adjacent
        # for this vertex
        for i in self.graph[v]:
            # If an adjacent is not visited,
            # then recur for that adjacent
            if visited[i] == False:
                if self.isCyclicUtil(i, visited, v) == True:
                    return True
 
            # If an adjacent is visited and not
            # parent of current vertex, then there
            # is a cycle.
            elif i != parent:
                return True
 
        return False
 
    # Returns true if the graph is a tree,
    # else false.
    def isTree(self):
        # Mark all the vertices as not visited
        # and not part of recursion stack
        visited = [False] * self.V
 
        # The call to isCyclicUtil serves multiple
        # purposes. It returns true if graph reachable
        # from vertex 0 is cyclic. It also marks
        # all vertices reachable from 0.
        if self.isCyclicUtil(0, visited, -1) == True:
            return False
 
        # If we find a vertex which is not reachable
        # from 0 (not marked by isCyclicUtil(),
        # then we return false
        for i in range(self.V):
            if visited[i] == False:
                return False
 
        return True
 
# Driver program to test above functions
g1 = Graph(5)
g1.addEdge(1, 0)
g1.addEdge(0, 2)
g1.addEdge(0, 3)
g1.addEdge(3, 4)
print ("Graph is a Tree" if g1.isTree() == True \
                          else "Graph is a not a Tree")
 
g2 = Graph(5)
g2.addEdge(1, 0)
g2.addEdge(0, 2)
g2.addEdge(2, 1)
g2.addEdge(0, 3)
g2.addEdge(3, 4)
print ("Graph is a Tree" if g2.isTree() == True \
                          else "Graph is a not a Tree")
                           
# This code is contributed by Divyanshu Mehta     


C#




// A C# Program to check whether
// a graph is tree or not
using System;
using System.Collections.Generic;
 
// This class represents a directed graph
// using adjacency list representation
class Graph
{
    private int V; // No. of vertices
    private List<int> []adj; // Adjacency List
 
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new List<int>();
    }
 
    // Function to add an edge
    // into the graph
    void addEdge(int v, int w)
    {
        adj[v].Add(w);
        adj[w].Add(v);
    }
 
    // A recursive function that uses visited[]
    // and parent to detect cycle in subgraph
    // reachable from vertex v.
    Boolean isCyclicUtil(int v, Boolean []visited,
                         int parent)
    {
        // Mark the current node as visited
        visited[v] = true;
        int i;
 
        // Recur for all the vertices
        // adjacent to this vertex
        foreach(int it in adj[v])
        {
            i = it;
 
            // If an adjacent is not visited,
            // then recur for that adjacent
            if (!visited[i])
            {
                if (isCyclicUtil(i, visited, v))
                    return true;
            }
 
            // If an adjacent is visited and
            // not parent of current vertex,
            // then there is a cycle.
            else if (i != parent)
            return true;
        }
        return false;
    }
 
    // Returns true if the graph
    // is a tree, else false.
    Boolean isTree()
    {
        // Mark all the vertices as not visited
        // and not part of recursion stack
        Boolean []visited = new Boolean[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // The call to isCyclicUtil serves
        // multiple purposes. It returns true if
        // graph reachable from vertex 0 is cyclic.
        // It also marks all vertices reachable from 0.
        if (isCyclicUtil(0, visited, -1))
            return false;
 
        // If we find a vertex which is not reachable
        // from 0 (not marked by isCyclicUtil(),
        // then we return false
        for (int u = 0; u < V; u++)
            if (!visited[u])
                return false;
 
        return true;
    }
 
    // Driver Code
    public static void Main(String []args)
    {
        // Create a graph given
        // in the above diagram
        Graph g1 = new Graph(5);
        g1.addEdge(1, 0);
        g1.addEdge(0, 2);
        g1.addEdge(0, 3);
        g1.addEdge(3, 4);
        if (g1.isTree())
            Console.WriteLine("Graph is Tree");
        else
            Console.WriteLine("Graph is not Tree");
 
        Graph g2 = new Graph(5);
        g2.addEdge(1, 0);
        g2.addEdge(0, 2);
        g2.addEdge(2, 1);
        g2.addEdge(0, 3);
        g2.addEdge(3, 4);
 
        if (g2.isTree())
            Console.WriteLine("Graph is Tree");
        else
            Console.WriteLine("Graph is not Tree");
 
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
  
// A JavaScript Program to check whether
// a graph is tree or not
 
// This class represents a directed graph
// using adjacency list representation
var V = 0; // No. of vertices
var adj; // Adjacency List
// Constructor
function initialize(v)
{
    V = v;
    adj = Array.from(Array(v), ()=>Array());
}
// Function to add an edge
// into the graph
function addEdge(v, w)
{
    adj[v].push(w);
    adj[w].push(v);
}
// A recursive function that uses visited[]
// and parent to detect cycle in subgraph
// reachable from vertex v.
function isCyclicUtil(v, visited, parent)
{
    // Mark the current node as visited
    visited[v] = true;
    var i;
    // Recur for all the vertices
    // adjacent to this vertex
    for(var it of adj[v])
    {
        i = it;
        // If an adjacent is not visited,
        // then recur for that adjacent
        if (!visited[i])
        {
            if (isCyclicUtil(i, visited, v))
                return true;
        }
        // If an adjacent is visited and
        // not parent of current vertex,
        // then there is a cycle.
        else if (i != parent)
        return true;
    }
    return false;
}
// Returns true if the graph
// is a tree, else false.
function isTree()
{
    // Mark all the vertices as not visited
    // and not part of recursion stack
    var visited = Array(V).fill(false);
   
    // The call to isCyclicUtil serves
    // multiple purposes. It returns true if
    // graph reachable from vertex 0 is cyclic.
    // It also marks all vertices reachable from 0.
    if (isCyclicUtil(0, visited, -1))
        return false;
    // If we find a vertex which is not reachable
    // from 0 (not marked by isCyclicUtil(),
    // then we return false
    for (var u = 0; u < V; u++)
        if (!visited[u])
            return false;
    return true;
}
// Driver Code
// Create a graph given
// in the above diagram
initialize(5)
addEdge(1, 0);
addEdge(0, 2);
addEdge(0, 3);
addEdge(3, 4);
if (isTree())
    document.write("Graph is Tree<br>");
else
    document.write("Graph is not Tree<br>");
initialize(5)
addEdge(1, 0);
addEdge(0, 2);
addEdge(2, 1);
addEdge(0, 3);
addEdge(3, 4);
if (isTree())
    document.write("Graph is Tree<br>");
else
    document.write("Graph is not Tree<br>");
 
 
</script>


Output

Graph is Tree
Graph is not Tree

Time Complexity: O(V + E) 
Auxiliary Space: O(V) as we are using the visited array.

Approach 2:

However if we observe carefully the definition of tree and its structure we will deduce that if a graph is connected and has n – 1 edges exactly then the graph is a tree.

Proof: 

Since we have assumed our graph of n nodes to be connected, it must have at least n – 1 edges inside it. Now if we try to add one more edge than the n – 1 edges already the graph will end up forming a cycle and thus will not satisfy the definition of tree. Therefore, it is necessary for a connected graph to have exactly n – 1 edges to avoid forming cycle

C++




// A C++ Program to check whether a graph is tree or not
#include<iostream>
#include <list>
#include <limits.h>
using namespace std;
 
// Class for an undirected graph
class Graph
{
    int V;    // No. of vertices
      int E;    // No. of edges
    list<int> *adj; // Pointer to an array for adjacency lists
    void dfsTraversal(int v, bool visited[], int parent);
public:
    Graph(int V);   // Constructor
    void addEdge(int v, int w);   // to add an edge to graph
    bool isConnected();   // returns true if graph is connected
    bool isTree();     // returns true of the graph is tree
};
 
Graph::Graph(int V)
{
    E = 0;
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    E++;                 // increase the number of edges
    adj[v].push_back(w); // Add w to v’s list.
    adj[w].push_back(v); // Add v to w’s list.
}
 
// A recursive dfs function that uses visited[] and parent to
// traverse the graph and mark visited[v] to true for visited nodes
void Graph::dfsTraversal(int v, bool visited[], int parent)
{
    // Mark the current node as visited
    visited[v] = true;
 
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
    {
        // If an adjacent is not visited, then recur for
        // that adjacent
        if (!visited[*i])
        {
           dfsTraversal(*i, visited, v);
        }
    }
}
 
// Returns true if the graph is connected, else false.
bool Graph::isConnected()
{
    // Mark all the vertices as not visited and not part of
    // recursion stack
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // Performing DFS traversal of the graph and marking
    // reachable vertices from 0 to true
    dfsTraversal(0, visited, -1);
 
    // If we find a vertex which is not reachable from 0
    // (not marked by dfsTraversal(), then we return false
    // since graph is not connected
    for (int u = 0; u < V; u++)
        if (!visited[u])
           return false;
 
    // since all nodes were reachable so we returned true and
    // and hence graph is connected
    return true;
}
 
bool Graph::isTree()
{
    // as we proved earlier if a graph is connected and has
    // V - 1 edges then it is a tree i.e. E = V - 1
    return isConnected() and E == V - 1;
}
// Driver program to test above functions
int main()
{
    Graph g1(5);
    g1.addEdge(1, 0);
    g1.addEdge(0, 2);
    g1.addEdge(0, 3);
    g1.addEdge(3, 4);
    g1.isTree()? cout << "Graph is Tree\n":
                 cout << "Graph is not Tree\n";
 
    Graph g2(5);
    g2.addEdge(1, 0);
    g2.addEdge(0, 2);
    g2.addEdge(2, 1);
    g2.addEdge(0, 3);
    g2.addEdge(3, 4);
    g2.isTree()? cout << "Graph is Tree\n":
                 cout << "Graph is not Tree\n";
 
    return 0;
}


Java




// A Java Program to check whether a graph is tree or not
import java.util.*;
 
// Class for an undirected graph
class Graph {
    public static int V; // No. of vertices
    public static int E; // No. of edges
    public static ArrayList<ArrayList<Integer> >
        adj; // Pointer to an array for adjacency lists
 
    // Constructor
    public Graph(int V)
    {
        E = 0;
        this.V = V;
        adj = new ArrayList<ArrayList<Integer> >(V);
        for (int i = 0; i < V; i++)
            adj.add(new ArrayList<Integer>());
    }
 
    // A recursive dfs function that uses visited[] and
    // parent to traverse the graph and mark visited[v] to
    // true for visited nodes
    static void dfsTraversal(int v, boolean[] visited,
                             int parent)
    {
        // Mark the current node as visited
        visited[v] = true;
 
        // Recur for all the vertices adjacent to this
        // vertex
        for (int i : adj.get(v)) {
            // If an adjacent is not visited, then recur for
            // that adjacent
            if (!visited[i]) {
                dfsTraversal(i, visited, v);
            }
        }
    }
 
    // to add an edge to graph
    public static void addEdge(int v, int w)
    {
        E++; // increase the number of edges
        adj.get(w).add(v); // Add w to v list.
        adj.get(v).add(w); // Add v to w list.
    }
 
    // Returns true if the graph is connected, else false.
    public static boolean isConnected()
    {
        // Mark all the vertices as not visited and not part
        // of recursion stack
        boolean[] visited = new boolean[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Performing DFS traversal of the graph and marking
        // reachable vertices from 0 to true
        dfsTraversal(0, visited, -1);
 
        // If we find a vertex which is not reachable from 0
        // (not marked by dfsTraversal(), then we return
        // false since graph is not connected
        for (int u = 0; u < V; u++)
            if (!visited[u])
                return false;
 
        // since all nodes were reachable so we returned
        // true and hence graph is connected
        return true;
    }
 
    public static boolean isTree()
    {
        // as we proved earlier if a graph is connected and
        // has V - 1 edges then it is a tree i.e. E = V - 1
        return isConnected() && E == V - 1;
    }
}
 
class Main {
    // Driver program to test above functions
    public static void main(String[] args)
    {
        Graph g1 = new Graph(5);
        g1.addEdge(1, 0);
        g1.addEdge(0, 2);
        g1.addEdge(0, 3);
        g1.addEdge(3, 4);
        if (g1.isTree())
            System.out.println("Graph is Tree");
        else
            System.out.println("Graph is not Tree");
 
        Graph g2 = new Graph(5);
        g2.addEdge(1, 0);
        g2.addEdge(0, 2);
        g2.addEdge(2, 1);
        g2.addEdge(0, 3);
        g2.addEdge(3, 4);
        if (g2.isTree())
            System.out.println("Graph is Tree");
        else
            System.out.println("Graph is not Tree");
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)


Python3




# A Python Program to check whether a graph is tree or not
 
# Class for an undirected graph
class Graph:
    def __init__(self, V):
        self.V = # No. of vertices
        self.E = 0  # No. of edges
        # Pointer to an array for adjacency lists
        self.adj = [[] for i in range(V)]
 
    # to add an edge to graph
    def addEdge(self, v, w):
        self.E += 1  # increase the number of edges
        self.adj[v].append(w)  # Add w to v’s list.
        self.adj[w].append(v)  # Add v to w’s list.
 
    # A recursive dfs function that uses visited[] and parent to
    # traverse the graph and mark visited[v] to true for visited nodes
    def dfsTraversal(self, v, visited, parent):
        # Mark the current node as visited
        visited[v] = True
 
        # Recur for all the vertices adjacent to this vertex
        for i in self.adj[v]:
 
            # If an adjacent is not visited, then recur for that adjacent
            if not visited[i]:
                self.dfsTraversal(i, visited, v)
 
    # Returns true if the graph is connected, else false.
    def isConnected(self):
        # Mark all the vertices as not visited and not part of recursion stack
 
        visited = [False] * self.V
 
        # Performing DFS traversal of the graph and marking reachable vertices from 0 to true
        self.dfsTraversal(0, visited, -1)
 
        # If we find a vertex which is not reachable from 0 (not marked by dfsTraversal(), then we return false since graph is not connected
        for u in range(self.V):
            if not visited[u]:
                return False
 
        # since all nodes were reachable so we returned true and hence graph is connected
        return True
 
    def isTree(self):
      #  as we proved earlier if a graph is connected and has
        # V - 1 edges then it is a tree i.e. E = V - 1
 
        return self.isConnected() and self.E == self.V - 1
 
 
# Driver program to test above functions
if __name__ == '__main__':
    g1 = Graph(5)
    g1.addEdge(1, 0)
    g1.addEdge(0, 2)
    g1.addEdge(0, 3)
    g1.addEdge(3, 4)
 
    print("Graph is Tree" if g1.isTree() == True else "Graph is not Tree")
 
    g2 = Graph(5)
    g2.addEdge(1, 0)
    g2.addEdge(0, 2)
    g2.addEdge(2, 1)
    g2.addEdge(0, 3)
    g2.addEdge(3, 4)
 
    print("Graph is Tree" if g2.isTree() == True else "Graph is not Tree")
 
# This code is contributed by Tapesh(tapeshdua420)


C#




// A C# Program to check whether a graph is tree or not
using System;
using System.Collections.Generic;
 
// Class for an undirected graph
class Graph {
    public int V; // No. of vertices
    public int E; // No. of edges
    public static List<List<int> >
        adj; // Pointer to an array for adjacency lists
 
    // Constructor
    public Graph(int V)
    {
        E = 0;
        this.V = V;
        adj = new List<List<int> >(V);
        for (int i = 0; i < V; i++)
            adj.Add(new List<int>());
    }
 
    // A recursive dfs function that uses visited[] and
    // parent to traverse the graph and mark visited[v] to
    // true for visited nodes
    static void dfsTraversal(int v, bool[] visited,
                             int parent)
    {
        // Mark the current node as visited
        visited[v] = true;
 
        // Recur for all the vertices adjacent to this
        // vertex
        foreach(var i in adj[v])
        {
            // If an adjacent is not visited, then recur for
            // that adjacent
            if (!visited[i]) {
                dfsTraversal(i, visited, v);
            }
        }
    }
 
    // to add an edge to graph
    public void addEdge(int v, int w)
    {
        E++; // increase the number of edges
        adj[w].Add(v); // Add w to v list.
        adj[v].Add(w); // Add v to w list.
    }
 
    // Returns true if the graph is connected, else false.
    public bool isConnected()
    {
        // Mark all the vertices as not visited and not part
        // of recursion stack
        bool[] visited = new bool[V];
        for (int i = 0; i < V; i++)
            visited[i] = false;
 
        // Performing DFS traversal of the graph and marking
        // reachable vertices from 0 to true
        dfsTraversal(0, visited, -1);
 
        // If we find a vertex which is not reachable from 0
        // (not marked by dfsTraversal(), then we return
        // false since graph is not connected
        for (int u = 0; u < V; u++)
            if (!visited[u])
                return false;
 
        // since all nodes were reachable so we returned
        // true and hence graph is connected
        return true;
    }
 
    public bool isTree()
    {
        // as we proved earlier if a graph is connected and
        // has V - 1 edges then it is a tree i.e. E = V - 1
        return isConnected() && E == V - 1;
    }
}
 
class Program {
    // Driver program to test above functions
    public static void Main(string[] args)
    {
 
        Graph g1 = new Graph(5);
        g1.addEdge(1, 0);
        g1.addEdge(0, 2);
        g1.addEdge(0, 3);
        g1.addEdge(3, 4);
 
        if (g1.isTree())
            Console.WriteLine("Graph is Tree");
        else
            Console.WriteLine("Graph is not Tree");
 
        Graph g2 = new Graph(5);
        g2.addEdge(1, 0);
        g2.addEdge(0, 2);
        g2.addEdge(2, 1);
        g2.addEdge(0, 3);
        g2.addEdge(3, 4);
 
        if (g2.isTree())
            Console.WriteLine("Graph is Tree");
        else
            Console.WriteLine("Graph is not Tree");
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)


Javascript




// A JavaScript Program to check whether a graph is tree or not
 
// Class for an undirected graph
class Graph {
    constructor(V) {
        this.V = V;  // No. of vertices
        this.E = 0;  // No. of edges
        this.adj = []; // Pointer to an array for adjacency lists
        for (var i = 0; i < V; i++) {
            this.adj[i] = [];
        }
    }
    addEdge(v, w) {
        this.E++;  // increase the number of edges
        this.adj[v].push(w);  // Add w to v’s list.
        this.adj[w].push(v);  // Add v to w’s list.
    }
 
    // A recursive dfs function that uses visited[] and parent to
    // traverse the graph and mark visited[v] to true for visited nodes
    dfsTraversal(v, visited, parent) {
        // Mark the current node as visited
        visited[v] = true;
 
        // Recur for all the vertices adjacent to this vertex
        for (var i of this.adj[v]) {
            // If an adjacent is not visited, then recur for
            // that adjacent
            if (!visited[i]) {
                this.dfsTraversal(i, visited, v);
            }
        }
    }
 
    // Returns true if the graph is connected, else false.
    isConnected() {
        // Mark all the vertices as not visited and not part of
        // recursion stack
       var visited = new Array(this.V);
        for (var i = 0; i < this.V; i++) {
          visited[i] = false;
        }
 
        // Performing DFS traversal of the graph and marking
        // reachable vertices from 0 to true
        this.dfsTraversal(0, visited, -1);
 
        // If we find a vertex which is not reachable from 0
        // (not marked by dfsTraversal(), then we return false
        // since graph is not connected
        for (var u = 0; u < this.V; u++) {
            if (!visited[u]) {
                return false;
            }
        }
 
        // since all nodes were reachable so we returned true and
        // and hence graph is connected
        return true;
    }
 
    isTree() {
        // as we proved earlier if a graph is connected and has
        // V - 1 edges then it is a tree i.e. E = V - 1
        return this.isConnected() && this.E == this.V - 1;
    }
}
// Driver program to test above functions
 
let g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
 
g1.isTree() ? console.log("Graph is Tree") : console.log("Graph is not Tree");
 
let g2 = new Graph(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
 
g2.isTree() ? console.log("Graph is Tree") : console.log("Graph is not Tree");
 
// This code is contributed by Tapesh(tapeshdua420)


Output

Graph is Tree
Graph is not Tree

Time Complexity: O(V + E) For performing the DFS traversal
Auxiliary Space: O(V) For storing the visited array



Last Updated : 06 Feb, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads