Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Elements of an array that are not divisible by any element of another array

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given two arrays A[] and B[], write an efficient code to determine if every element of B[] is divisible by at least 1 element of A[]. Display those elements of B[], which are not divisible by any of the elements in A[]. 

Examples : 

Input : A[] = {100, 200, 400, 100, 600}
        B[] = {45, 90, 48, 1000, 3000}
Output : 45, 90, 48 
The output elements are those that are 
not divisible by any element of A[].

Method I (Naive Implementation):

  • Iterate through every single element of B[].
  • Check if it is divisible by at least 1 element of A[] or not. If not divisible by any, then print it.

Implementation:

C++




// C++ code for naive implementation
#include<iostream>
using namespace std;
 
// Function for checking the condition
// with 2 loops
void printNonDivisible(int A[], int B[],
                          int n, int m)
{
    for (int i = 0; i < m; i++)
    {
        int j = 0;
        for (j = 0; j < n; j++)
            if( B[i] % A[j] == 0 )
                break;
 
        // If none of the elements in A[]
        // divided B[i]
        if (j == n)
            cout << B[i] << endl;
    }
}
 
// Driver code
int main()
{
    int A[] = {100, 200, 400, 100};
    int n = sizeof(A)/sizeof(A[0]);
    int B[] = {190, 200, 87, 600, 800};
    int m = sizeof(B)/sizeof(B[0]);
    printNonDivisible(A, B, n, m);
    return 0;
}

Java




// Java code for naive implementation
import java.io.*;
 
public class GFG {
     
// Function for checking the condition
// with 2 loops
static void printNonDivisible(int []A, int []B,
                              int n, int m)
{
     
    for (int i = 0; i < m; i++)
    {
        int j = 0;
        for (j = 0; j < n; j++)
            if( B[i] % A[j] == 0 )
                break;
 
        // If none of the elements
        // in A[] divided B[i]
        if (j == n)
            System.out.println(B[i]);
    }
}
 
    // Driver code
    static public void main (String[] args)
    {
        int []A = {100, 200, 400, 100};
        int n = A.length;
         
        int []B = {190, 200, 87, 600, 800};
        int m = B.length;
         
        printNonDivisible(A, B, n, m);
    }
}
 
// This code is contributed by vt_m .

Python3




# Python3 code for naive implementation
import math as mt
 
# Function for checking the condition
# with 2 loops
def printNonDivisible(A, B, n, m):
 
    for i in range(m):
        j = 0
        for j in range(n):
            if(B[i] % A[j] == 0):
                break
 
        # If none of the elements in A[]
        # divided B[i]
        if (j == n - 1):
            print(B[i])
 
# Driver code
A = [100, 200, 400, 100]
n = len(A)
B = [190, 200, 87, 600, 800]
m = len(B)
printNonDivisible(A, B, n, m)
 
# This code is contributed by#
# mohit kumar 29

C#




// C# code for naive implementation
using System;
 
public class GFG {
     
// Function for checking the
// condition with 2 loops
static void printNonDivisible(int []A, int []B,
                              int n, int m)
{
     
    for (int i = 0; i < m; i++)
    {
        int j = 0;
        for (j = 0; j < n; j++)
            if( B[i] % A[j] == 0 )
                break;
 
        // If none of the elements
        // in A[] divided B[i]
        if (j == n)
            Console.WriteLine(B[i]);
    }
}
 
    // Driver code
    static public void Main ()
    {
        int []A = {100, 200, 400, 100};
        int n = A.Length;
        int []B = {190, 200, 87, 600, 800};
        int m = B.Length;
        printNonDivisible(A, B, n, m);
    }
}
 
// This code is contributed by vt_m .

PHP




<?php
// PHP code for naive implementation
 
// Function for checking
// the condition with 2 loops
function printNonDivisible($A, $B,
                           $n, $m)
{
    for ($i = 0; $i < $m; $i++)
    {
        $j = 0;
        for ($j = 0; $j < $n; $j++)
            if( $B[$i] % $A[$j] == 0 )
                break;
 
        // If none of the elements
        // in A[] divided B[i]
        if ($j == $n)
            echo $B[$i], "\n";
    }
}
 
// Driver code
$A= array (100, 200, 400, 100);
$n = sizeof($A);
$B = array (190, 200, 87, 600, 800);
$m = sizeof($B);
 
printNonDivisible($A, $B, $n, $m);
 
// This code is contributed by ajit
?>

Javascript




<script>
 
    // Javascript code for naive implementation
     
    // Function for checking the
    // condition with 2 loops
    function printNonDivisible(A, B, n, m)
    {
 
        for (let i = 0; i < m; i++)
        {
            let j = 0;
            for (j = 0; j < n; j++)
                if( B[i] % A[j] == 0 )
                    break;
 
            // If none of the elements
            // in A[] divided B[i]
            if (j == n)
                document.write(B[i] + "</br>");
        }
    }
     
    let A = [100, 200, 400, 100];
    let n = A.length;
    let B = [190, 200, 87, 600, 800];
    let m = B.length;
    printNonDivisible(A, B, n, m);
 
</script>

Output

190
87

Time Complexity :- O(n*m) 
Auxiliary Space :- O(1) 

Method 2 (Efficient when elements in are small) 

  • Maintain an array mark[] to mark the multiples of the numbers in A[].
  • Mark all the multiples of all the elements in A[], till a max of B[].
  • Check if mark[B[i]] value for every element n in B[] is not 0 and print if not marked.

Implementation:

C++




// CPP code for improved implementation
#include<bits/stdc++.h>
using namespace std;
 
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
void printNonDivisible(int A[], int B[], int n,
                                         int m)
{
    // Find maximum element in B[]
    int maxB = 0;
    for (int i = 0; i < m; i++)
        if (B[i] > maxB)
            maxB = B[i];
 
    // Initialize all multiples as marked
    int mark[maxB];
    memset(mark, 0, sizeof(mark));
 
    // Marking the multiples of all the
    // elements of the array.
    for (int i = 0; i < n; i++)
        for (int x = A[i]; x <= maxB; x += A[i])
            mark[x]++;
 
    // Print not marked elements
    for (int i = 0; i < m; i++)
        if (! mark[B[i]])
            cout << B[i] << endl;
}
 
// Driver function
int main()
{
    int A[] = {100, 200, 400, 100};
    int n = sizeof(A)/sizeof(A[0]);
    int B[] = {190, 200, 87, 600, 800};
    int m = sizeof(B)/sizeof(B[0]);
    printNonDivisible(A, B, n, m);
    return 0;
}

Java




// Java code for improved implementation
import java.io.*;
 
class GFG
{
     
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
static void printNonDivisible(int []A, int []B,
                                    int n,int m)
{
    // Find maximum element in B[]
    int maxB = 0;
    for (int i = 0; i < m; i++)
        if (B[i] > maxB)
            maxB = B[i];
 
    // Initialize all multiples as marked
 
    int [] mark = new int[maxB + 1];
    for(int i = 0; i < maxB; i++)
        mark[i]=0;
 
    // Marking the multiples of all the
    // elements of the array.
    for (int i = 0; i < n; i++)
        for (int x = A[i]; x <= maxB; x += A[i])
            mark[x]++;
 
    // Print not marked elements
    for (int i = 0; i < m; i++)
        if (mark[B[i]] == 0)
            System.out.println(B[i]);
}
 
// Driver code
static public void main(String[] args)
{
    int []A= {100, 200, 400, 100};
    int n = A.length;
    int []B= {190, 200, 87, 600, 800};
    int m = B.length;
    printNonDivisible(A, B, n, m);
}
}
 
// This code is contributed by Mohit Kumar.

Python3




# Python 3 code for improved implementation
 
# Function for printing all elements of B[]
# that are not divisible by any element of A[]
def printNonDivisible(A, B, n, m):
     
    # Find maximum element in B[]
    maxB = 0
    for i in range(0, m, 1):
        if (B[i] > maxB):
            maxB = B[i]
 
    # Initialize all multiples as marked
    mark = [0 for i in range(maxB)]
 
    # Marking the multiples of all
    # the elements of the array.
    for i in range(0, n, 1):
        for x in range(A[i], maxB, A[i]):
            mark[x] += 1
 
    # Print not marked elements
    for i in range(0, m - 1, 1):
        if (mark[B[i]] == 0):
            print(B[i])
 
# Driver Code
if __name__ == '__main__':
    A = [100, 200, 400, 100]
    n = len(A)
    B = [190, 200, 87, 600, 800]
    m = len(B)
    printNonDivisible(A, B, n, m)
 
# This code is contributed by
# Shashank_Sharma

C#




// C# code for improved implementation
using System;
 
class GFG
{
     
// Function for printing all elements of []B
// that are not divisible by any element of []A
static void printNonDivisible(int []A, int []B,
                                    int n, int m)
{
    // Find maximum element in []B
    int maxB = 0;
    for (int i = 0; i < m; i++)
        if (B[i] > maxB)
            maxB = B[i];
 
    // Initialize all multiples as marked
    int [] mark = new int[maxB + 1];
    for(int i = 0; i < maxB; i++)
        mark[i] = 0;
 
    // Marking the multiples of all the
    // elements of the array.
    for (int i = 0; i < n; i++)
        for (int x = A[i]; x <= maxB; x += A[i])
            mark[x]++;
 
    // Print not marked elements
    for (int i = 0; i < m; i++)
        if (mark[B[i]] == 0)
            Console.WriteLine(B[i]);
}
 
// Driver code
static public void Main(String[] args)
{
    int []A= {100, 200, 400, 100};
    int n = A.Length;
    int []B= {190, 200, 87, 600, 800};
    int m = B.Length;
    printNonDivisible(A, B, n, m);
}
}
 
// This code is contributed by Rajput-Ji

PHP




<?php
// PHP code for improved implementation
 
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
function printNonDivisible($A, $B, $n, $m)
{
     
    // Find maximum element in B[]
    $maxB = 0;
    for ($i = 0; $i < $m; $i++)
    {
        if ($B[$i] > $maxB)
            $maxB = $B[$i];
    }
     
    // Initialize all multiples as marked
    $mark = array();
    for ($i = 0; $i < $maxB; $i++)
    {
        $mark[] = "0";
    }
 
    // Marking the multiples of all
    // the elements of the array.
    for ($i = 0; $i < $n; $i++)
    {
        for ($x = $A[$i]; $x < $maxB;
                          $x += $A[$i])
        {
            $mark[$x] += 1;
        }
    }
     
    // Print not marked elements
    for ($i = 0; $i < $m - 1; $i++)
    {
        if ($mark[$B[$i]] == 0)
            echo "$B[$i]\n";
    }
}
 
// Driver Code
$A = array(100, 200, 400, 100);
$n = count($A);
$B = array(190, 200, 87, 600, 800);
$m = count($B);
printNonDivisible($A, $B, $n, $m);
 
// This code is contributed by
// Srathore
?>

Javascript




<script>
 
    // Javascript code for improved implementation
     
    // Function for printing all elements of []B
    // that are not divisible by any element of []A
    function printNonDivisible(A, B, n, m)
    {
        // Find maximum element in []B
        let maxB = 0;
        for (let i = 0; i < m; i++)
            if (B[i] > maxB)
                maxB = B[i];
 
        // Initialize all multiples as marked
        let mark = new Array(maxB + 1);
        for(let i = 0; i < maxB; i++)
            mark[i] = 0;
 
        // Marking the multiples of all the
        // elements of the array.
        for (let i = 0; i < n; i++)
            for (let x = A[i]; x <= maxB; x += A[i])
                mark[x]++;
 
        // Print not marked elements
        for (let i = 0; i < m; i++)
            if (mark[B[i]] == 0)
                document.write(B[i] + "</br>");
    }
     
    let A= [100, 200, 400, 100];
    let n = A.length;
    let B= [190, 200, 87, 600, 800];
    let m = B.length;
    printNonDivisible(A, B, n, m);
     
</script>

Output

190
87

Time Complexity :- O(m + n*(max(B[]/min(A[]))) 
Auxiliary Space :- O(n) + O(m) + O(max(B[])) 

This article is contributed by Sakshi Tiwari .If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Last Updated : 13 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials