# Check data type in NumPy

• Last Updated : 09 Aug, 2021

Numpy is a module in python. It is originally called numerical python, but in short, we pronounce it as numpy. NumPy is a general-purpose array-processing package in python. It provides high-performance multidimensional data structures like array objects and tools for working with these arrays. Numpy provides faster and efficient calculations of matrices and arrays.

NumPy provides familiarity with almost all mathematical functions. In numpy these functions are called universal function ufunc.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

### Below are various values to check data type in NumPy:

Method #1

Checking datatype using dtype.

Example 1:

## Python3

 `# importing numpy library``import` `numpy as np` `# creating and initializing an array``arr ``=` `np.array([``1``, ``2``, ``3``, ``23``, ``56``, ``100``])` `# printing the array and checking datatype``print``(``'Array:'``, arr)` `print``(``'Datatype:'``, arr.dtype)`

Output:

```Array: [  1   2   3  23  56 100]
Datatype: int32```

Example 2:

## Python3

 `import` `numpy as np` `# creating and initializing array of string``arr_1 ``=` `np.array([``'apple'``, ``'ball'``, ``'cat'``, ``'dog'``])` `# printing array and its datatype``print``(``'Array:'``, arr_1)` `print``(``'Datatype:'``, arr_1.dtype)`

Output:

```Array: ['a' 'b' 'c' 'd']
Datatype: <U1```

Method #2

Creating the array with a defined datatype. Creating numpy array by using an array function array(). This function takes argument dtype that allows us to define the expected data type of the array elements:

Example 1:

## Python3

 `import` `numpy as np` `# Creating and initializing array with datatype``arr ``=` `np.array([``1``, ``2``, ``3``, ``8``, ``7``, ``5``], dtype``=``'S'``)` `# printing array and its datatype``print``(``"Array:"``, arr)``print``(``"Datatype:"``, arr.dtype)`

Output:

```Array: [b'1' b'2' b'3' b'8' b'7' b'5']
Datatype: |S1```

S is used for defining string datatype. We use i, u, f, S and U for defining various other data types along with their size.

Example 2:

## Python3

 `import` `numpy as np` `# creating and initialising array along``# with datatype and its size 4 i.e. 32bytes``arr ``=` `np.array([``1``, ``2``, ``3``, ``4``], dtype``=``'i4'``)` `# printing array and datatype``print``(``'Array:'``, arr)``print``(``'Datatype:'``, arr.dtype)`

Output:

```Array: [1 2 3 4 8 9 5]
Datatype: int32```

In the above example, the size of integer elements is 4 i.e. 32bytes

Example 3:

## Python3

 `import` `numpy as np` `# creating and initialising array along``# with datatype and its size 8 i.e. 64bytes``arr ``=` `np.array([``1``, ``2``, ``3``, ``4``], dtype``=``'i8'``)` `# printing array and datatype``print``(``'Array:'``, arr)``print``(``'Datatype:'``, arr.dtype)`

Output:

```Array: [1 2 3 4 8 9 7]
Datatype: int64```

And in this example the size of elements is 64bytes.

Example 4:

## Python3

 `import` `numpy as np` `# creating and initialising array along``# with datatype and its size 4 i.e. 32bytes``arr ``=` `np.array([``1``, ``2``, ``3``, ``4``, ``8``, ``9``, ``7``], dtype``=``'f4'``)` `# printing array and datatype``print``(``'Array:'``, arr)``print``(``'Datatype:'``, arr.dtype)`

Output:

```Array: [1. 2. 3. 4. 8. 9. 7.]
Datatype: float32```

In the above example, the data type is float and the size is 32bytes.

Example 5:

## Python3

 `import` `numpy as np` `# creating and initialising array along``# with datatype and its size 2``arr ``=` `np.array([``1``, ``2``, ``3``, ``4``, ``8``, ``9``, ``7``], dtype``=``'S2'``)` `# printing array and datatype``print``(``'Array:'``, arr)``print``(``'Datatype:'``, arr.dtype)`

Output:

```Array: [b'1' b'2' b'3' b'4' b'8' b'9' b'7']
Datatype: |S2```

In the above example, the datatype is a string and the size is 2.

My Personal Notes arrow_drop_up