# Check if an array represents Inorder of Binary Search tree or not

• Difficulty Level : Easy
• Last Updated : 25 May, 2021

Given an array of N element. The task is to check if it is Inorder traversal of any Binary Search Tree or not. Print “Yes” if it is Inorder traversal of any Binary Search Tree else print “No”.
Examples:

```Input : arr[] = { 19, 23, 25, 30, 45 }
Output : Yes

Input : arr[] = { 19, 23, 30, 25, 45 }
Output : No```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

The idea is to use the fact that the inorder traversal of Binary Search Tree is sorted. So, just check if given array is sorted or not.

## C++

 `// C++ program to check if a given array is sorted``// or not.``#include``using` `namespace` `std;` `// Function that returns true if array is Inorder``// traversal of any Binary Search Tree or not.``bool` `isInorder(``int` `arr[], ``int` `n)``{``    ``// Array has one or no element``    ``if` `(n == 0 || n == 1)``        ``return` `true``;` `    ``for` `(``int` `i = 1; i < n; i++)` `        ``// Unsorted pair found``        ``if` `(arr[i-1] > arr[i])``            ``return` `false``;` `    ``// No unsorted pair found``    ``return` `true``;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 19, 23, 25, 30, 45 };``    ``int` `n = ``sizeof``(arr)/``sizeof``(arr);``    ` `    ``if` `(isInorder(arr, n))``        ``cout << ``"Yesn"``;``    ``else``        ``cout << ``"Non"``;``        ` `  ``return` `0;``}`

## Java

 `// Java program to check if a given array is sorted``// or not.` `class` `GFG {` `// Function that returns true if array is Inorder``// traversal of any Binary Search Tree or not.``    ``static` `boolean` `isInorder(``int``[] arr, ``int` `n) {``        ``// Array has one or no element``        ``if` `(n == ``0` `|| n == ``1``) {``            ``return` `true``;``        ``}` `        ``for` `(``int` `i = ``1``; i < n; i++) ``// Unsorted pair found``        ``{``            ``if` `(arr[i - ``1``] > arr[i]) {``                ``return` `false``;``            ``}``        ``}` `        ``// No unsorted pair found``        ``return` `true``;``    ``}``// Drivers code` `    ``public` `static` `void` `main(String[] args) {``        ``int` `arr[] = {``19``, ``23``, ``25``, ``30``, ``45``};``        ``int` `n = arr.length;``        ``if` `(isInorder(arr, n)) {``            ``System.out.println(``"Yes"``);``        ``} ``else` `{``            ``System.out.println(``"Non"``);``        ``}``    ``}``}``//This code is contributed by 29AjayKumar`

## Python3

 `# Python 3 program to check if a given array``# is sorted or not.` `# Function that returns true if array is Inorder``# traversal of any Binary Search Tree or not.``def` `isInorder(arr, n):``    ` `    ``# Array has one or no element``    ``if` `(n ``=``=` `0` `or` `n ``=``=` `1``):``        ``return` `True` `    ``for` `i ``in` `range``(``1``, n, ``1``):``        ` `        ``# Unsorted pair found``        ``if` `(arr[i ``-` `1``] > arr[i]):``            ``return` `False` `    ``# No unsorted pair found``    ``return` `True` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[``19``, ``23``, ``25``, ``30``, ``45``]``    ``n ``=` `len``(arr)``    ` `    ``if` `(isInorder(arr, n)):``        ``print``(``"Yes"``)``    ``else``:``        ``print``(``"No"``)``        ` `# This code is contributed by``# Sahil_Shelangia`

## C#

 `// C# program to check if a given``// array is sorted or not.``using` `System;` `class` `GFG``{` `// Function that returns true if``// array is Inorder traversal of``// any Binary Search Tree or not.``static` `bool` `isInorder(``int``[] arr, ``int` `n)``{``    ``// Array has one or no element``    ``if` `(n == 0 || n == 1)``    ``{``        ``return` `true``;``    ``}``    ` `    ``// Unsorted pair found``    ``for` `(``int` `i = 1; i < n; i++)``    ``{``        ``if` `(arr[i - 1] > arr[i])``        ``{``            ``return` `false``;``        ``}``    ``}` `    ``// No unsorted pair found``    ``return` `true``;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `[]arr = {19, 23, 25, 30, 45};``    ``int` `n = arr.Length;``    ``if` `(isInorder(arr, n))``    ``{``        ``Console.Write(``"Yes"``);``    ``}``    ``else``    ``{``        ``Console.Write(``"Non"``);``    ``}``}``}` `// This code is contributed by Rajput-Ji`

## PHP

 ` ``\$arr``[``\$i``])``            ``return` `false;` `    ``// No unsorted pair found``    ``return` `true;``}` `// Driver code``\$arr` `= ``array``(19, 23, 25, 30, 45);``\$n` `= sizeof(``\$arr``);` `if` `(isInorder(``\$arr``, ``\$n``))``    ``echo` `"Yes"``;``else``    ``echo` `"No"``;` `// This code is contributed``// by Akanksha Rai``?>`

## Javascript

 ``

Output:

`Yes`

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.