# Change the array into a permutation of numbers from 1 to n

Given an array A of n elements. We need to change the array into a permutation of numbers from 1 to n using minimum replacements in the array.
Examples:

```Input : A[] = {2, 2, 3, 3}
Output : 2 1 3 4
Explanation:
To make it a permutation of 1 to 4, 1 and 4 are
missing from the array. So replace 2, 3 with
1 and 4.

Input :  A[] = {1, 3, 2}
Output : 1 3 2

Input : A[] = {10, 1, 2}
Output : 3 1 2
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:Observe that we don’t need to change the numbers which are in the range [1, n] and which are distinct(has only one occurrence). So, we use a greedy approach. If we meet the number we have never met before and this number is between 1 and n, we leave this number unchanged. And remove the duplicate elements and add the missing elements in the range [1, n]. Also replace the numbers, not in the range.

## C++

 `// CPP program to make a permutation of numbers ` `// from 1 to n using minimum changes. ` `#include ` `using` `namespace` `std; ` ` `  `void` `makePermutation(``int` `a[], ``int` `n) ` `{ ` `    ``// Store counts of all elements. ` `    ``unordered_map<``int``, ``int``> count; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``count[a[i]]++; ` ` `  `    ``int` `next_missing = 1; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``if` `(count[a[i]] != 1 || a[i] > n || a[i] < 1) { ` `            ``count[a[i]]--; ` ` `  `            ``// Find next missing element to put ` `            ``// in place of current element. ` `            ``while` `(count.find(next_missing) != count.end()) ` `                ``next_missing++; ` ` `  `            ``// Replace with next missing and insert the ` `            ``// missing element in hash. ` `            ``a[i] = next_missing; ` `            ``count[next_missing] = 1; ` `        ``} ` `    ``} ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `A[] = { 2, 2, 3, 3 }; ` `    ``int` `n = ``sizeof``(A) / ``sizeof``(A); ` `    ``makePermutation(A, n); ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << A[i] << ``" "``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to make a permutation of numbers ` `// from 1 to n using minimum changes. ` `import` `java.util.*; ` ` `  `class` `GFG  ` `{ ` `static` `void` `makePermutation(``int` `[]a, ``int` `n) ` `{ ` `    ``// Store counts of all elements. ` `    ``HashMap count = ``new` `HashMap(); ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``if``(count.containsKey(a[i])) ` `        ``{ ` `            ``count.put(a[i], count.get(a[i]) + ``1``); ` `        ``} ` `        ``else` `        ``{ ` `            ``count.put(a[i], ``1``); ` `        ``} ` `    ``} ` ` `  `    ``int` `next_missing = ``1``; ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``if` `(count.containsKey(a[i]) &&  ` `            ``count.get(a[i]) != ``1` `||  ` `            ``a[i] > n || a[i] < ``1``)  ` `        ``{ ` `            ``count.put(a[i], count.get(a[i]) - ``1``); ` ` `  `            ``// Find next missing element to put ` `            ``// in place of current element. ` `            ``while` `(count.containsKey(next_missing)) ` `                ``next_missing++; ` ` `  `            ``// Replace with next missing and insert  ` `            ``// the missing element in hash. ` `            ``a[i] = next_missing; ` `            ``count. put(next_missing, ``1``); ` `        ``} ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `A[] = { ``2``, ``2``, ``3``, ``3` `}; ` `    ``int` `n = A.length; ` `    ``makePermutation(A, n); ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``System.out.print(A[i] + ``" "``); ` `    ``} ` `} ` ` `  `// This code is contributed by PrinciRaj1992  `

## Python3

 `# Python3 code to make a permutation ` `# of numbers from 1 to n using  ` `# minimum changes. ` ` `  `def` `makePermutation (a, n): ` ` `  `    ``# Store counts of all elements. ` `    ``count ``=` `dict``() ` `    ``for` `i ``in` `range``(n): ` `        ``if` `count.get(a[i]): ` `            ``count[a[i]] ``+``=` `1` `        ``else``: ` `            ``count[a[i]] ``=` `1``; ` `         `  `    ``next_missing ``=` `1` `    ``for` `i ``in` `range``(n): ` `        ``if` `count[a[i]] !``=` `1` `or` `a[i] > n ``or` `a[i] < ``1``: ` `            ``count[a[i]] ``-``=` `1` `             `  `            ``# Find next missing element to put ` `            ``# in place of current element. ` `            ``while` `count.get(next_missing): ` `                ``next_missing``+``=``1` `             `  `            ``# Replace with next missing and ` `            ``# insert the missing element in hash. ` `            ``a[i] ``=` `next_missing ` `            ``count[next_missing] ``=` `1` ` `  `# Driver Code ` `A ``=` `[ ``2``, ``2``, ``3``, ``3` `] ` `n ``=` `len``(A) ` `makePermutation(A, n) ` ` `  `for` `i ``in` `range``(n): ` `    ``print``(A[i], end ``=` `" "``) ` `     `  `# This code is contributed by "Sharad_Bhardwaj".  `

## C#

 `// C# program to make a permutation of numbers ` `// from 1 to n using minimum changes. ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG  ` `{ ` `static` `void` `makePermutation(``int` `[]a, ``int` `n) ` `{ ` `    ``// Store counts of all elements. ` `    ``Dictionary<``int``, ` `               ``int``> count = ``new` `Dictionary<``int``, ` `                                           ``int``>(); ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``if``(count.ContainsKey(a[i])) ` `        ``{ ` `            ``count[a[i]] = count[a[i]] + 1; ` `        ``} ` `        ``else` `        ``{ ` `            ``count.Add(a[i], 1); ` `        ``} ` `    ``} ` ` `  `    ``int` `next_missing = 1; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``if` `(count.ContainsKey(a[i]) &&  ` `            ``count[a[i]] != 1 ||  ` `            ``a[i] > n || a[i] < 1)  ` `        ``{ ` `            ``count[a[i]] = count[a[i]] - 1; ` ` `  `            ``// Find next missing element to put ` `            ``// in place of current element. ` `            ``while` `(count.ContainsKey(next_missing)) ` `                ``next_missing++; ` ` `  `            ``// Replace with next missing and insert  ` `            ``// the missing element in hash. ` `            ``a[i] = next_missing; ` `            ``count.Add(next_missing, 1); ` `        ``} ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]A = { 2, 2, 3, 3 }; ` `    ``int` `n = A.Length; ` `    ``makePermutation(A, n); ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``Console.Write(A[i] + ``" "``); ` `} ` `} ` ` `  `// This code is contributed by Princi Singh `

Output:

`1 2 4 3`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.