**Central Tendency** is one of the feature of descriptive statistics. Central tendency tells about how the group of data is clustered around the centre value of the distribution. Central tendency performs the following measures:

- Arithmetic Mean
- Geometric Mean
- Harmonic Mean
- Median
- Mode

#### Arithmetic Mean

The arithmetic mean is simply called the average of the numbers which represents the central value of the data distribution. It is calculated by adding all the values and then dividing by the total number of observations.

**Formula:**

**where,**

Xindicates the arithmetic mean

indicates value in data vectornindicates total number of observations

In R language, arithmetic mean can be calculated by

function.**mean()**

Syntax:mean(x, trim, na.rm = FALSE)

Parameters:x:Represents objecttrim:Specifies number of values to be removed from each side of object before calculating the mean. The value is between 0 to 0.5na.rm:If TRUE then removes the NA value fromx

**Example:**

`# Defining vector` `x <` `-` `c(` `3` `, ` `7` `, ` `5` `, ` `13` `, ` `20` `, ` `23` `, ` `39` `, ` `23` `, ` `40` `, ` `23` `, ` `14` `, ` `12` `, ` `56` `, ` `23` `)` ` ` `# Print mean` `print` `(mean(x))` |

**Output:**

[1] 21.5

#### Geometric Mean

The geometric mean is a type of mean that is computed by multiplying all the data values and thus, shows the central tendency for given data distribution.

**Formula:**

**where,**

Xindicates geometric mean

indicates value in data vectornindicates total number of observations

and **prod()**

function helps in finding the geometric mean for given set of numbers as there is no direct function for geometric mean.**length()**

Syntax:prod(x)^(1/length(x))

where,prod()function returns the product of all values present in vectorxlength()function returns the length of vectorx

**Example:**

`# Defining vector` `x <` `-` `c(` `1` `, ` `5` `, ` `9` `, ` `19` `, ` `25` `)` ` ` `# Print Geometric Mean` `print` `(prod(x)^(` `1` `/` `length(x)))` |

**Output:**

[1] 7.344821

#### Harmonic Mean

Harmonic mean is another type of mean used as another measure of central tendency. It is computed as reciprocal of the arithmetic mean of reciprocals of the given set of values.

**Formula:**

**where,**

Xindicates harmonic mean

indicates value in data vectornindicates total number of observations

**Example:**

Modifying the code to find the harmonic mean of given set of values.

`# Defining vector` `x <` `-` `c(` `1` `, ` `5` `, ` `8` `, ` `10` `)` ` ` `# Print Harmonic Mean` `print` `(` `1` `/` `mean(` `1` `/` `x))` |

**Output:**

[1] 2.807018

#### Median

Median in statistics is another measure of central tendency which represents the middlemost value of a given set of values.

In R language, median can be calculated by

function.**median()**

Syntax:median(x, na.rm = FALSE)

Parameters:x:It is the data vectorna.rm:If TRUE then removes the NA value fromx

**Example:**

`# Defining vector` `x <` `-` `c(` `3` `, ` `7` `, ` `5` `, ` `13` `, ` `20` `, ` `23` `, ` `39` `, ` ` ` `23` `, ` `40` `, ` `23` `, ` `14` `, ` `12` `, ` `56` `, ` `23` `)` ` ` `# Print Median` `median(x)` |

**Output:**

[1] 21.5

#### Mode

The mode of a given set of values is the value that is repeated most in the set. There can exist multiple mode values in case if there are two or more values with matching maximum frequency.

**Example 1: Single-mode value**

In R language, there is no function to calculate mode. So, modifying the code to find out the mode for a given set of values.

`# Defining vector` `x <` `-` `c(` `3` `, ` `7` `, ` `5` `, ` `13` `, ` `20` `, ` `23` `, ` `39` `, ` ` ` `23` `, ` `40` `, ` `23` `, ` `14` `, ` `12` `, ` `56` `,` ` ` `23` `, ` `29` `, ` `56` `, ` `37` `, ` `45` `, ` `1` `, ` `25` `, ` `8` `)` ` ` `# Generate frequency table` `y <` `-` `table(x)` ` ` `# Print frequency table` `print` `(y)` ` ` `# Mode of x` `m <` `-` `names(y)[which(y ` `=` `=` `max` `(y))]` ` ` `# Print mode` `print` `(m)` |

**Output:**

x 1 3 5 7 8 12 13 14 20 23 25 29 37 39 40 45 56 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 2 [1] "23"

**Example 2: Multiple Mode values**

`# Defining vector` `x <` `-` `c(` `3` `, ` `7` `, ` `5` `, ` `13` `, ` `20` `, ` `23` `, ` `39` `, ` `23` `, ` `40` `, ` ` ` `23` `, ` `14` `, ` `12` `, ` `56` `, ` `23` `, ` `29` `, ` `56` `, ` `37` `,` ` ` `45` `, ` `1` `, ` `25` `, ` `8` `, ` `56` `, ` `56` `)` ` ` `# Generate frequency table` `y <` `-` `table(x)` ` ` `# Print frequency table` `print` `(y)` ` ` `# Mode of x` `m <` `-` `names(y)[which(y ` `=` `=` `max` `(y))]` ` ` `# Print mode` `print` `(m)` |

**Output:**

x 1 3 5 7 8 12 13 14 20 23 25 29 37 39 40 45 56 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 4 [1] "23" "56"