# Central binomial coefficient

Given an integer N, the task is to find the Central binomial coefficient.
The first few Central binomial coefficients for N = 0, 1, 2, 3.. are

1, 2, 6, 20, 70, 252, 924, 3432…..

Examples:

Input: N = 3
Output: 20
Explanation: Central Binomial Cofficient = = = = 20

Input: N = 2
Output: 6

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The central binomial coefficient is a binomial coefficient of the form . The Binomial Coefficient can be computed using this approach for a given value N using Dynamic Programming.

For Example:

Central binomial coefficient of N = 3 is given by: = = = 20

Below is the implementation of the above approach:

## C++

 // C++ implementation to find the   // Nth Central Binomial Coefficient     #include   using namespace std;      // Function to find the value of   // Nth Central Binomial Coefficient  int binomialCoeff(int n, int k)   {       int C[n + 1][k + 1];       int i, j;          // Calculate value of Binomial      // Coefficient in bottom up manner       for (i = 0; i <= n; i++)       {           for (j = 0; j <= min(i, k); j++)           {               // Base Cases               if (j == 0 || j == i)                   C[i][j] = 1;                  // Calculate value               // using previously               // stored values               else                 C[i][j] = C[i - 1][j - 1] +                           C[i - 1][j];           }       }          return C[n][k];   }      // Driver Code   int main()   {       int n = 3;      int k = n;      n = 2*n;      cout << binomialCoeff(n, k);   }

## Java

 // Java implementation to find the   // Nth Central Binomial Coefficient  class GFG{         // Function to find the value of   // Nth Central Binomial Coefficient  static int binomialCoeff(int n, int k)   {       int[][] C = new int[n + 1][k + 1];       int i, j;          // Calculate value of Binomial      // Coefficient in bottom up manner       for(i = 0; i <= n; i++)       {          for(j = 0; j <= Math.min(i, k); j++)          {                           // Base Cases             if (j == 0 || j == i)                 C[i][j] = 1;                          // Calculate value             // using previously             // stored values             else               C[i][j] = C[i - 1][j - 1] +                           C[i - 1][j];          }       }       return C[n][k];   }      // Driver Code   public static void main(String[] args)  {       int n = 3;      int k = n;      n = 2 * n;             System.out.println(binomialCoeff(n, k));   }  }     // This code is contributed by Ritik Bansal

## C#

 // C# implementation to find the   // Nth Central Binomial Coefficient  using System;  class GFG{         // Function to find the value of   // Nth Central Binomial Coefficient  static int binomialCoeff(int n, int k)   {       int [,]C = new int[n + 1, k + 1];       int i, j;          // Calculate value of Binomial      // Coefficient in bottom up manner       for(i = 0; i <= n; i++)       {          for(j = 0; j <= Math.Min(i, k); j++)         {                          // Base Cases             if (j == 0 || j == i)                 C[i, j] = 1;                              // Calculate value             // using previously             // stored values             else               C[i, j] = C[i - 1, j - 1] +                           C[i - 1, j];          }       }       return C[n, k];   }      // Driver Code   public static void Main()  {       int n = 3;      int k = n;      n = 2 * n;             Console.Write(binomialCoeff(n, k));   }  }     // This code is contributed by Code_Mech

Output:

20


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : btc_148, Code_Mech, nidhi_biet

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.