Skip to content
Related Articles

Related Articles

Improve Article

Central binomial coefficient

  • Last Updated : 28 Jun, 2021
Geek Week

Given an integer N, the task is to find the N^{th}    Central binomial coefficient
The first few Central binomial coefficients for N = 0, 1, 2, 3… are 
 

1, 2, 6, 20, 70, 252, 924, 3432…..

Examples: 
 

Input: N = 3 
Output: 20 
Explanation: 
N^{th}    Central Binomial Coefficient = \binom{2N}{N}    \binom{2*3}{3}    \frac{6*5*4}{3*2*1}    = 20
Input: N = 2 
Output:
 

 



Approach: The central binomial coefficient is a binomial coefficient of the form \binom{2N}{N}    . The Binomial Coefficient \binom{2N}{N}    can be computed using this approach for a given value N using Dynamic Programming.
For Example: 
 

Central binomial coefficient of N = 3 is given by: 
\binom{2N}{N}    \binom{2*3}{3}    \frac{6*5*4}{3*2*1}    = 20 
 

Below is the implementation of the above approach:
 

C++




// C++ implementation to find the
// Nth Central Binomial Coefficient
 
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the value of
// Nth Central Binomial Coefficient
int binomialCoeff(int n, int k)
{
    int C[n + 1][k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= min(i, k); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value
            // using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
        }
    }
 
    return C[n][k];
}
 
// Driver Code
int main()
{
    int n = 3;
    int k = n;
    n = 2*n;
    cout << binomialCoeff(n, k);
}

Java




// Java implementation to find the
// Nth Central Binomial Coefficient
class GFG{
     
// Function to find the value of
// Nth Central Binomial Coefficient
static int binomialCoeff(int n, int k)
{
    int[][] C = new int[n + 1][k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for(i = 0; i <= n; i++)
    {
       for(j = 0; j <= Math.min(i, k); j++)
       {
            
          // Base Cases
          if (j == 0 || j == i)
              C[i][j] = 1;
           
          // Calculate value
          // using previously
          // stored values
          else
              C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
       }
    }
    return C[n][k];
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    int k = n;
    n = 2 * n;
     
    System.out.println(binomialCoeff(n, k));
}
}
 
// This code is contributed by Ritik Bansal

Python3




# C# implementation to find the
# Nth Central Binomial Coefficient
 
# Function to find the value of
# Nth Central Binomial Coefficient
def binomialCoeff(n, k):
     
    C = [[0 for j in range(k + 1)]
            for i in range(n + 1)]
     
    i = 0
    j = 0
     
    # Calculate value of Binomial
    # Coefficient in bottom up manner
    for i in range(n + 1):
        for j in range(min(i, k) + 1):
             
            # Base Cases
            if j == 0 or j == i:
                C[i][j] = 1
                 
            # Calculate value
            # using previously
            # stored values
            else:
                C[i][j] = (C[i - 1][j - 1] +
                           C[i - 1][j])
     
    return C[n][k]
     
# Driver code
if __name__=='__main__':
     
    n = 3
    k = n
    n = 2 * n
     
    print(binomialCoeff(n, k))
         
# This code is contributed by rutvik_56

C#




// C# implementation to find the
// Nth Central Binomial Coefficient
using System;
class GFG{
     
// Function to find the value of
// Nth Central Binomial Coefficient
static int binomialCoeff(int n, int k)
{
    int [,]C = new int[n + 1, k + 1];
    int i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for(i = 0; i <= n; i++)
    {
       for(j = 0; j <= Math.Min(i, k); j++)
       {
            
          // Base Cases
          if (j == 0 || j == i)
              C[i, j] = 1;
               
          // Calculate value
          // using previously
          // stored values
          else
              C[i, j] = C[i - 1, j - 1] +
                        C[i - 1, j];
       }
    }
    return C[n, k];
}
 
// Driver Code
public static void Main()
{
    int n = 3;
    int k = n;
    n = 2 * n;
     
    Console.Write(binomialCoeff(n, k));
}
}
 
// This code is contributed by Code_Mech

Javascript




<script>
 
// Javascript implementation to find the
// Nth Central Binomial Coefficient
 
// Function to find the value of
// Nth Central Binomial Coefficient
function binomialCoeff(n, k)
{
    var C = Array.from(Array(n+1),()=> Array(k+1));
    var i, j;
 
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= Math.min(i, k); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value
            // using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] +
                        C[i - 1][j];
        }
    }
 
    return C[n][k];
}
 
// Driver Code
var n = 3;
var k = n;
n = 2*n;
document.write( binomialCoeff(n, k));
 
 
</script>
Output: 
20

 

Time Complexity: O(N * K)
Auxiliary Space: O(N * K)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :