Skip to content
Related Articles

Related Articles

Centered triangular number
  • Difficulty Level : Basic
  • Last Updated : 26 Mar, 2021

Given an integer n, find the nth Centered triangular number. 
Centered Triangular Number is a centered polygonal number that represents a triangle with a dot in the centre and all other dots surrounding the centre in successive triangular layers [Source : Wiki ]
Pictorial Representation : 
 

centered Trigunal number pic

The first few centered triangular number series are : 
1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460………………………..
Examples:
 

Input : n = 1
Output : 4
Explanation :
A dot in the centre and 3 dots forming the
triangle outside it, thus 4.

Input : n = 6 
Output : 64

Input : n = 10
Output : 166

 

Approach 
nth Term of centered triangular number is given by: 
 



CT_{n}=(3n^2+3n+2)/2

Basic Implementation of the above approach:
 

C++




// CPP Program to find the
// nth Centered Trigunal number
#include
using namespace std;
 
// function for Centered
// Trigunal number
int Centered_Trigunal_num(int n)
{
    // formula for find Centered
    // Trigunal number nth term
    return (3 * n * n + 3 * n + 2) / 2;
}
 
// Driver Code
int main()
{
    // For 3rd Centered Trigunal number
    int n = 3;
    cout << Centered_Trigunal_num(n) << endl;
 
    // For 12th Centered Trigunal number
    n = 12;
    cout << Centered_Trigunal_num(n) << endl;
 
    return 0;
}

Java




// Java Program to find
// the nth Centered
// Triangular number
import java.io.*;
 
class GFG
{
     
// function for Centered
// Trigunal number
static int Centered_Trigunal_num(int n)
{
    // formula for find Centered
    // Trigunal number nth term
    return (3 * n * n +
            3 * n + 2) / 2;
}
 
// Driver Code
public static void main (String[] args)
{
 
// For 3rd Centered
// Trigunal number
int n = 3;
System.out.println(Centered_Trigunal_num(n));
 
// For 12th Centered
// Trigunal number
n = 12;
System.out.println(Centered_Trigunal_num(n));
}
}
 
// This code is contributed by ajit

Python3




# Program to find nth
# Centered Trigunal number
 
def Centered_Trigunal_num(n) :
     
    # Formula to calculate nth
    # Centered Trigunal number
    return (3 * n * n +
            3 * n + 2) // 2
 
# Driver Code
if __name__ == '__main__' :
 
    # For 3rd Centered
    # Trigunal number    
    n = 3
    print(Centered_Trigunal_num(n))
     
    # For 12th Centered
    # Trigunal number
    n = 12
    print(Centered_Trigunal_num(n))
                 
                 
# This code is contributed
# by akt_mit

C#




// C# Program to find
// the nth Centered
// Triangular number
using System;
 
class GFG
{
 
// function for Centered
// Trigunal number
static int Centered_Trigunal_num(int n)
{
    // formula for find Centered
    // Trigunal number nth term
    return (3 * n * n +
            3 * n + 2) / 2;
}
 
// Driver Code
static public void Main ()
{
 
// For 3rd Centered
// Trigunal number
int n = 3;
Console.WriteLine(Centered_Trigunal_num(n));
 
// For 12th Centered
// Trigunal number
n = 12;
Console.WriteLine(Centered_Trigunal_num(n));
}
}
 
// This code is contributed by akt_mit

PHP




<?php
// PHP Program to find the
//nth Centered Trigunal number
 
// function for Centered
// Trigunal number
function Centered_Trigunal_num($n)
{
    // formula for find Centered
    // Trigunal number nth term
    return (3 * $n * $n + 3 * $n + 2) / 2;
}
 
// Driver Code
    // For 3rd Centered Trigunal number
    $n = 3;
    echo Centered_Trigunal_num($n), "\n" ;
 
    // For 12th Centered Trigunal number
    $n = 12;
    echo Centered_Trigunal_num($n), "\n";
 
// This code is contributed by aj_36
?>

Javascript




<script>
// javascript Program to find
// the nth Centered
// Triangular number
 
    // function for Centered
    // Trigunal number
    function Centered_Trigunal_num(n)
    {
     
        // formula for find Centered
        // Trigunal number nth term
        return (3 * n * n + 3 * n + 2) / 2;
    }
 
    // Driver Code
     
        // For 3rd Centered
        // Trigunal number
        var n = 3;
        document.write(Centered_Trigunal_num(n)+"<br/>");
 
        // For 12th Centered
        // Trigunal number
        n = 12;
        document.write(Centered_Trigunal_num(n)+"<br/>");
 
// This code is contributed by Rajput-Ji
</script>

Output : 
 

19
235

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :