# Carpet Plots using Plotly in Python

• Last Updated : 01 Oct, 2020

A Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. Plotly is an interactive visualization library.

## Carpet Plots

A carpet plot is any of a few different specific types of plot. A carpet plot is one that shows the interaction between two or more independent variables and one or more dependent variables in a two-dimensional plot. The carpet plot distinguishes itself from other plots as carpet plot can be used to more accurately interpolate data points. It can be created using the Carpet() method of graph_objects class.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: plotly.graph_objects.Carpet(a=None,b=None,carpet=None, x=None, y=None)

Parameters:

a: An array containing values of the first parameter value

b: An array containing values of the first parameter value

x: A two dimensional array of x coordinates at each carpet point. If ommitted, the plot is a cheater plot and the xaxis is hidden by default.

y: A two dimensional array of y coordinates at each carpet point.

carpet: An identifier for this carpet, so that scattercarpet and contourcarpet traces can specify a carpet plot on which they lie

Example:

## Python3

 `import` `plotly.graph_objects as go`` ` `fig ``=` `go.Figure(go.Carpet(``    ``y ``=` `[``1``, ``2``, ``3``, ``4``, ``5``, ``6``]``))`` ` `fig.show()`

Output: ### Adding a and b values

A and B attributes should be used to save the parameter values.

Example:

## Python3

 `import` `plotly.graph_objects as go`` ` `fig ``=` `go.Figure(go.Carpet(``    ``a ``=` `[``1``, ``2``, ``3``, ``1``, ``2``, ``3``],``    ``b ``=` `[``4``, ``5``, ``6``, ``4``, ``5``, ``6``],``    ``y ``=` `[``1``, ``2``, ``3``, ``4``, ``5``, ``6``]``))`` ` `fig.show()`

Output: ### Set A and B Axis

aaxis and baxis lists are used to set A and B axis respectively.

Example 1:

## Python3

 `import` `plotly.graph_objects as go`` ` `fig ``=` `go.Figure(go.Carpet(``    ``a``=``[``1``, ``2``, ``3``, ``4``, ``5``, ``6``],``    ``b``=``[``6``, ``5``, ``4``, ``3``, ``2``, ``1``],``    ``y``=``[``1``, ``2``, ``3``, ``4``, ``5``, ``6``],`` ` `    ``aaxis``=``dict``(``        ``tickprefix``=``'F = '``,``        ``ticksuffix``=``'N'``,``        ``smoothing``=``0.2``,``        ``minorgridcount``=``10``,``    ``),``    ``baxis``=``dict``(``        ``tickprefix``=``'P = '``,``        ``ticksuffix``=``'pa'``,``        ``smoothing``=``0.4``,``        ``minorgridcount``=``9``,``    ``)``))`` ` `fig.show()`

Output: Example 2: Styling A and B axis

## Python3

 `import` `plotly.graph_objects as go`` ` `fig ``=` `go.Figure(go.Carpet(``    ``a``=``[``1``, ``2``, ``3``, ``4``, ``5``, ``6``],``    ``b``=``[``6``, ``5``, ``4``, ``3``, ``2``, ``1``],``    ``y``=``[``1``, ``2``, ``3``, ``4``, ``5``, ``6``],`` ` `    ``aaxis``=``dict``(``        ``tickprefix``=``'F = '``,``        ``ticksuffix``=``'N'``,``        ``smoothing``=``0.2``,``        ``minorgridcount``=``10``,``    ``),``    ``baxis``=``dict``(``        ``tickprefix``=``'P = '``,``        ``ticksuffix``=``'pa'``,``        ``smoothing``=``0.4``,``        ``minorgridcount``=``9``,``    ``)``))`` ` `fig.update_layout(``    ``plot_bgcolor``=``'black'``,``    ``paper_bgcolor``=``'black'``,``    ``xaxis``=``dict``(``        ``showgrid``=``False``,``        ``showticklabels``=``False``    ``),``    ``yaxis``=``dict``(``        ``showgrid``=``False``,``        ``showticklabels``=``False``    ``)``)`` ` `fig.show()`

Output: My Personal Notes arrow_drop_up