Calculating n-th real root using binary search

Given two number x and n, find n-th root of x.
Examples:

Input : 5 2
Output : 2.2360679768025875

Input :  x = 5, n = 3
Output : 1.70997594668


In order to calculate nth root of a number, we can use the following procedure.

  1. If x lies in the range [0, 1) then we set the lower limit low = x and upper limit high = 1, because for this range of numbers the nth root is always greater than the given number and can never exceed 1.
    eg-  $\sqrt{0.09} = 0.3$.
  2. Otherwise, we take low = 1 and high = x.
  3. Declare a variable named epsilon and initialize it for accuracy you need.
    Say epsilon=0.01, then we can guarantee that our guess for nth root of the given number will be
    correct up to 2 decimal places.
  4. Declare a variable guess and initialize it to guess=(low+high)/2.
  5. Run a loop such that:
    • if the absolute error of our guess is more than epsilon then do:
      1. if guessn > x, then high=x
      2. else low=x
      3. Making a new better guess i.e., guess=(low+high)/2.
    • If the absolute error of our guess is less than epsilon then exit the loop.

Absolute Error: Absolute Error can be calculated as abs(guessn -x)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find 
// n-th real root of x
#include<bits/stdc++.h>
using namespace std;
  
void findNthRoot(double x, int n)
{
  
// Initialize boundary values 
double low, high;
if (x >= 0 and x <= 1)
{
    low = x;
    high = 1;
}
else
{
    low = 1;
    high = x; 
  
// used for taking approximations 
// of the answer 
double epsilon = 0.00000001;
  
// Do binary search 
double guess = (low + high) / 2;
while (abs((pow(guess, n)) - x) >= epsilon)
{
    if (pow(guess, n) > x)
    {
        high = guess ;
    
    else
    {
        low = guess ;
    }
    guess = (low + high) / 2;
}
  
cout << fixed << setprecision(16) 
     << guess;
}     
  
// Driver code 
int main()
{
    double x = 5;
    int n = 2;
    findNthRoot(x, n) ;
}
  
// This code is contributed
// by Subhadeep

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find n-th real root of x
class GFG
{
static void findNthRoot(double x, int n)
{
  
// Initialize boundary values 
double low, high;
if (x >= 0 && x <= 1)
{
    low = x;
    high = 1;
}
else
{
    low = 1;
    high = x; 
  
// used for taking approximations 
// of the answer 
double epsilon = 0.00000001;
  
// Do binary search 
double guess = (low + high) / 2;
while (Math.abs((Math.pow(guess, n)) - x) >= epsilon)
{
    if (Math.pow(guess, n) > x)
    {
        high = guess ;
    
    else
    {
        low = guess ;
    }
    guess = (low + high) / 2;
}
  
System.out.println(guess);
  
// Driver code 
public static void main(String[] args)
{
    double x = 5;
    int n = 2;
    findNthRoot(x, n) ;
}
}
  
// This code is contributed
// by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to find n-th real root 
# of x
  
def findNthRoot(x, n):
  
    # Initialize boundary values
    x = float(x)
    n = int(n)
    if (x >= 0 and x <= 1):
        low = x
        high = 1
    else:
        low = 1
        high = x
         
    # used for taking approximations 
    # of the answer   
    epsilon = 0.00000001
  
    # Do binary search
    guess = (low + high) / 2
    while abs(guess ** n - x) >= epsilon:
        if guess ** n > x:
            high = guess
        else:
            low = guess
        guess = ( low + high ) / 2
    print(guess)
      
  
# Driver code    
x = 5
n = 2
findNthRoot(x, n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find n-th real root of x
  
using System;
  
public class GFG{
static void findNthRoot(double x, int n)
{
  
// Initialize boundary values 
double low, high;
if (x >= 0 && x <= 1)
{
    low = x;
    high = 1;
}
else
{
    low = 1;
    high = x; 
  
// used for taking approximations 
// of the answer 
double epsilon = 0.00000001;
  
// Do binary search 
double guess = (low + high) / 2;
while (Math.Abs((Math.Pow(guess, n)) - x) >= epsilon)
{
    if (Math.Pow(guess, n) > x)
    {
        high = guess ;
    
    else
    {
        low = guess ;
    }
    guess = (low + high) / 2;
}
  
Console.WriteLine(guess);
  
// Driver code 
    static public void Main (){
    double x = 5;
    int n = 2;
    findNthRoot(x, n) ;
}
}
  
// This code is contributed by akt_mit

chevron_right


Output:

2.2360679768025875

Explanation of first example with epsilon = 0.01

Since taking too small value of epsilon as taken in our program might not be feasible for
explanation because it will increase the number of steps drastically so for the sake of
simplicity we are taking epsilon = 0.01 The above procedure will work as follows: Say we have to calculate the $\sqrt{5}$, then x = 5, low = 1, high = 5. Taking epsilon = 0.01 First Guess: guess = (1 + 5) / 2 = 3 Absolute error = |32 - 5| = 4 > epsilon guess2 = 9 > 5(x) then high = guess --> high = 3 Second Guess: guess = (1 + 3) / 2 = 2 Absolute error = |22 - 5| = 1 > epsilon guess2 = 4 > 5(x) then low = guess --> low = 2 Third Guess: guess = (2 + 3) / 2 = 2.5 Absolute error = |2.52 - 5| = 1.25 > epsilon guess2 = 6.25 > 5(x) then high = guess --> high = 2.5 and proceeding so on we will get the $\sqrt{5}$ correct up to 2 decimal places i.e., $\sqrt{5}$ = 2.23600456 We will ignore the digits after 2 decimal places since they may or may not be correct.


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.