Skip to content
Related Articles

Related Articles

Improve Article
Calculate volume and surface area of Torus
  • Last Updated : 07 Apr, 2021

This article is about the surface and mathematical concept of a torus. 
A 3D shape made by revolving a small circle (radius r) along a line made by a bigger circle (radius R). 
 

Torus

Torus

Property: 
 

  1. It can be made by revolving a small circle (radius r) along a line made by a bigger circle (radius R). 
     
  2. It is not a polyhedron 
     
  3. It has no vertices or edges 
     

 

  • Surface Area 
    The surface area of a Torus is given by the formula – 
     
Surface Area = 4 × Pi^2 × R × r
  • Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159. 
     
  • Volume 
    The volume of a cone is given by the formula – 
     
Volume = 2 × Pi^2 × R × r^2
  • Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159. 
     

Examples: 
 

Input : r=3, R=7
Output :
     Volume: 1243.568195
     Surface: 829.045464

 



C++




// C++ program to calculate volume
// and surface area of Torus
#include<bits/stdc++.h>
using namespace std;
 
int main()
{
    // radus of inner circle
    double r = 3;
 
    // distance from origin to center of inner circle
    // radius of black circle in figure
    double R = 7;
 
    // Value of Pi
    float pi = (float)3.14159;
    double Volume = 0;
    Volume = 2 * pi * pi * R * r * r;
    cout<<"Volume: "<<Volume<<endl;
 
    double Surface = 4 * pi * pi * R * r;
    cout<<"Surface: "<<Surface<<endl;
}

C




// C program to calculate volume
// and surface area of Torus
#include <stdio.h>
int main()
{
    // radus of inner circle
    double r = 3;
 
    // distance from origin to center of inner circle
    // radius of black circle in figure
    double R = 7;
 
    // Value of Pi
    float pi = (float)3.14159;
    double Volume = 0;
    Volume = 2 * pi * pi * R * r * r;
    printf("Volume: %f", Volume);
 
    double Surface = 4 * pi * pi * R * r;
    printf("\nSurface: %f", Surface);
}

Java




// Java program to calculate volume
// and surface area of Torus
class Test {
 
    public static void main(String args[])
    {
 
        // radius of inner circle
        double r = 3;
 
        // distance from origin to center of inner circle
        // radius of black circle in figure
        double R = 7;
 
        // Value of Pi
        float pi = (float)3.14159;
        double Volume = 0;
        Volume = 2 * pi * pi * R * r * r;
        System.out.printf("Volume: %f", Volume);
 
        double Surface = 4 * pi * pi * R * r;
        System.out.printf("\nSurface: %f", Surface);
    }
}

Python3




# Python3 program to calculate volume
# and surface area of Torus
# radus of inner circle
r = 3
 
# distance from origin to center of inner circle
# radius of black circle in figure
R = 7
 
# Value of Pi
pi = 3.14159
Volume = (float)(2 * pi * pi * R * r * r);
print("Volume: ", Volume);
Surface = (float)(4 * pi * pi * R * r);
print("Surface: ", Surface);

C#




// C# program to calculate volume
// and surface area of Torus
using System;
 
class GFG
{
     
// Driver Code
public static void Main()
{
 
    // radius of inner circle
    double r = 3;
 
    // distance from origin to center
    // of inner circle radius of black
    // circle in figure
    double R = 7;
 
    // Value of Pi
    float pi = (float)3.14159;
    double Volume = 0;
    Volume = 2 * pi * pi * R * r * r;
    Console.WriteLine("Volume: {0}", Volume);
 
    double Surface = 4 * pi * pi * R * r;
    Console.WriteLine("Surface: {0}", Surface);
}
}
 
// This code is contributed by Soumik

PHP




<?php
// PHP program to calculate volume
// and surface area of Torus
 
// radus of inner circle
$r = 3;
 
// distance from origin to center
// of inner circle radius of black
// circle in figure
$R = 7;
 
// Value of Pi
$pi = (float)3.14159;
$Volume = 0;
$Volume = 2 * $pi * $pi * $R * $r * $r;
 
echo "Volume: ", $Volume, "\n";
 
$Surface = 4 * $pi * $pi * $R * $r;
 
echo "Surface: ", $Surface, "\n";
     
// This code is contributed by ajit
?>

Javascript




<script>
 
// Javascript program to calculate volume
// and surface area of Torus
 
// radius of inner circle
var r = 3;
 
// distance from origin to center of inner circle
// radius of black circle in figure
var R = 7;
 
// Value of Pi
var pi = 3.14159;
var Volume = 0;
Volume = 2 * pi * pi * R * r * r;
document.write("Volume: " + Volume + "<br>");
 
var Surface = 4 * pi * pi * R * r;
document.write("Surface: " + Surface);
 
</script>
Output: 
Volume: 1243.568195
Surface: 829.045464

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :