In this article, we will discuss QR decomposition of a matrix. QR factorization of a matrix is the decomposition of a matrix say ‘A’ into ‘A=QR’ where Q is orthogonal and R is an upper-triangular matrix. We can calculate the QR decomposition of a given matrix with the help of numpy.linalg.qr().
Syntax : numpy.linalg.qr(a, mode=’reduced’)
Parameters :
- a : matrix(M,N) which needs to be factored.
- mode : it is optional. It can be :
Example 1:
Python3
import numpy as np # Original matrix matrix1 = np.array([[ 1 , 2 , 3 ], [ 3 , 4 , 5 ]]) print (matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print ( '\nQ:\n' , q) print ( '\nR:\n' , r) |
Output:
[[1 2 3] [3 4 5]] Q: [[-0.31622777 -0.9486833 ] [-0.9486833 0.31622777]] R: [[-3.16227766 -4.42718872 -5.69209979] [ 0. -0.63245553 -1.26491106]]
Example 2:
Python3
import numpy as np # Original matrix matrix1 = np.array([[ 1 , 0 ], [ 2 , 4 ]]) print (matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print ( '\nQ:\n' , q) print ( '\nR:\n' , r) |
Output:
[[1 0] [2 4]] Q: [[-0.4472136 -0.89442719] [-0.89442719 0.4472136 ]] R: [[-2.23606798 -3.57770876] [ 0. 1.78885438]]
Example 3:
Python3
import numpy as np # Create a numpy array arr = np.array([[ 5 , 11 , - 15 ], [ 12 , 34 , - 51 ], [ - 24 , - 43 , 92 ]], dtype = np.int32) print (arr) # Find the QR factor of array q, r = np.linalg.qr(arr) print ( '\nQ:\n' , q) print ( '\nR:\n' , r) |
Output:
[[ 5 11 -15] [ 12 34 -51] [-24 -43 92]] Q: [[-0.18318583 -0.08610905 0.97929984] [-0.43964598 -0.88381371 -0.15995231] [ 0.87929197 -0.45984624 0.12404465]] R: [[-27.29468813 -54.77256208 106.06459346] [ 0. -11.22347731 4.06028083] [ 0. 0. 4.88017756]]
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.