 GeeksforGeeks App
Open App Browser
Continue

# Calculate the Manhattan Distance between two cells of given 2D array

Given a 2D array of size M * N and two points in the form (X1, Y1) and (X2 , Y2) where X1 and X2 represents the rows and Y1 and Y2 represents the column. The task is to calculate the Manhattan distance between the given points.

Examples:

Input: M = 5, N = 5, X1 = 1, Y1 = 2, X2 = 3, Y2 = 3
Output: 3
Explanation: As per the definition, the Manhattan the distance is same as sum of the absolute difference of the coordinates.

Input: M = 5, N = 5, X1 = 4, Y1 = 2, X2 = 4, Y2 = 2
Output: 0

Approach: The approach is based on mathematical observation. The Manhattan distance between two points is the sum of absolute difference of the coordinates.

Manhattan distance = |X1 – X2| + |Y1 – Y2|

Below is the implementation of the above approach.

## C++

 `// C++ code to implement above approach``#include ``using` `namespace` `std;` `// Code to calculate Manhattan distance``int` `manhattanDist(``int` `M, ``int` `N, ``int` `X1,``                  ``int` `Y1, ``int` `X2, ``int` `Y2)``{``    ``int` `dist = ``abs``(X2 - X1) + ``abs``(Y2 - Y1);``    ``return` `dist;``}` `// Driver code``int` `main()``{``    ``// Define size of 2-D array``    ``int` `M = 5, N = 5;` `    ``// First point``    ``int` `X1 = 1, Y1 = 2;` `    ``// Second point``    ``int` `X2 = 3, Y2 = 3;` `    ``cout << manhattanDist(M, N, X1, Y1, X2, Y2);``    ``return` `0;``}`

## Java

 `// java code to implement above approach` `class` `GFG``{` `  ``// Code to calculate Manhattan distance``  ``static` `int` `manhattanDist(``int` `M, ``int` `N, ``int` `X1,``                           ``int` `Y1, ``int` `X2, ``int` `Y2) {``    ``int` `dist = Math.abs(X2 - X1) + Math.abs(Y2 - Y1);``    ``return` `dist;``  ``}` `  ``// Driver code``  ``public` `static` `void` `main(String args[])``  ``{` `    ``// Define size of 2-D array``    ``int` `M = ``5``, N = ``5``;` `    ``// First point``    ``int` `X1 = ``1``, Y1 = ``2``;` `    ``// Second point``    ``int` `X2 = ``3``, Y2 = ``3``;` `    ``System.out.println(manhattanDist(M, N, X1, Y1, X2, Y2));``  ``}``}` `// This code is contributed by gfgking.`

## Python3

 `# Python code for the above approach``import` `math as Math` `# Code to calculate Manhattan distance``def` `manhattanDist(M, N, X1, Y1, X2, Y2):``    ``dist ``=` `Math.fabs(X2 ``-` `X1) ``+` `Math.fabs(Y2 ``-` `Y1)``    ``return` `(``int``)(dist)` `# Driver code` `# Define size of 2-D array``M ``=` `5``N ``=` `5` `# First point``X1 ``=` `1``Y1 ``=` `2` `# Second point``X2 ``=` `3``Y2 ``=` `3` `print``(manhattanDist(M, N, X1, Y1, X2, Y2))` `# This code is contributed by Saurabh Jaiswal`

## C#

 `// C# code to implement above approach``using` `System;``class` `GFG {` `  ``// Code to calculate Manhattan distance``  ``static` `int` `manhattanDist(``int` `M, ``int` `N, ``int` `X1, ``int` `Y1,``                           ``int` `X2, ``int` `Y2)``  ``{``    ``int` `dist = Math.Abs(X2 - X1) + Math.Abs(Y2 - Y1);``    ``return` `dist;``  ``}` `  ``// Driver code``  ``public` `static` `void` `Main()``  ``{` `    ``// Define size of 2-D array``    ``int` `M = 5, N = 5;` `    ``// First point``    ``int` `X1 = 1, Y1 = 2;` `    ``// Second point``    ``int` `X2 = 3, Y2 = 3;` `    ``Console.WriteLine(``      ``manhattanDist(M, N, X1, Y1, X2, Y2));``  ``}``}` `// This code is contributed by ukasp.`

## Javascript

 ``

Output

`3`

Time Complexity: O(1)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up