Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Calculate the Manhattan Distance between two cells of given 2D array

  • Last Updated : 06 Jan, 2022

Given a 2D array of size M * N and two points in the form (X1, Y1) and (X2 , Y2) where X1 and X2 represents the rows and Y1 and Y2 represents the column. The task is to calculate the Manhattan distance between the given points. 

Examples:

Input: M = 5, N = 5, X1 = 1, Y1 = 2, X2 = 3, Y2 = 3
Output: 3
Explanation: As per the definition, the Manhattan the distance is same as sum of the absolute difference of the coordinates.

Input: M = 5, N = 5, X1 = 4, Y1 = 2, X2 = 4, Y2 = 2
Output: 0

 

Approach: The approach is based on mathematical observation. The Manhattan distance between two points is the sum of absolute difference of the coordinates.

Manhattan distance = |X1 – X2| + |Y1 – Y2|

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Code to calculate Manhattan distance
int manhattanDist(int M, int N, int X1,
                  int Y1, int X2, int Y2)
{
    int dist = abs(X2 - X1) + abs(Y2 - Y1);
    return dist;
}
 
// Driver code
int main()
{
    // Define size of 2-D array
    int M = 5, N = 5;
 
    // First point
    int X1 = 1, Y1 = 2;
 
    // Second point
    int X2 = 3, Y2 = 3;
 
    cout << manhattanDist(M, N, X1, Y1, X2, Y2);
    return 0;
}

Java




// java code to implement above approach
 
class GFG
{
 
  // Code to calculate Manhattan distance
  static int manhattanDist(int M, int N, int X1,
                           int Y1, int X2, int Y2) {
    int dist = Math.abs(X2 - X1) + Math.abs(Y2 - Y1);
    return dist;
  }
 
  // Driver code
  public static void main(String args[])
  {
 
    // Define size of 2-D array
    int M = 5, N = 5;
 
    // First point
    int X1 = 1, Y1 = 2;
 
    // Second point
    int X2 = 3, Y2 = 3;
 
    System.out.println(manhattanDist(M, N, X1, Y1, X2, Y2));
  }
}
 
// This code is contributed by gfgking.

Python3




# Python code for the above approach
import math as Math
 
# Code to calculate Manhattan distance
def manhattanDist(M, N, X1, Y1, X2, Y2):
    dist = Math.fabs(X2 - X1) + Math.fabs(Y2 - Y1)
    return (int)(dist)
 
# Driver code
 
# Define size of 2-D array
M = 5
N = 5
 
# First point
X1 = 1
Y1 = 2
 
# Second point
X2 = 3
Y2 = 3
 
print(manhattanDist(M, N, X1, Y1, X2, Y2))
 
# This code is contributed by Saurabh Jaiswal

C#




// C# code to implement above approach
using System;
class GFG {
 
  // Code to calculate Manhattan distance
  static int manhattanDist(int M, int N, int X1, int Y1,
                           int X2, int Y2)
  {
    int dist = Math.Abs(X2 - X1) + Math.Abs(Y2 - Y1);
    return dist;
  }
 
  // Driver code
  public static void Main()
  {
 
    // Define size of 2-D array
    int M = 5, N = 5;
 
    // First point
    int X1 = 1, Y1 = 2;
 
    // Second point
    int X2 = 3, Y2 = 3;
 
    Console.WriteLine(
      manhattanDist(M, N, X1, Y1, X2, Y2));
  }
}
 
// This code is contributed by ukasp.

Javascript




<script>
       // JavaScript code for the above approach
 
       // Code to calculate Manhattan distance
       function manhattanDist(M, N, X1,
           Y1, X2, Y2) {
           let dist = Math.abs(X2 - X1) + Math.abs(Y2 - Y1);
           return dist;
       }
 
       // Driver code
 
       // Define size of 2-D array
       let M = 5, N = 5;
 
       // First point
       let X1 = 1, Y1 = 2;
 
       // Second point
       let X2 = 3, Y2 = 3;
 
       document.write(manhattanDist(M, N, X1, Y1, X2, Y2));
 
 // This code is contributed by Potta Lokesh
   </script>

 
 

Output
3

Time Complexity: O(1)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!