# Calculate the Euclidean distance using NumPy

• Difficulty Level : Basic
• Last Updated : 05 Jul, 2021

In simple terms, Euclidean distance is the shortest between the 2 points irrespective of the dimensions. In this article to find the Euclidean distance, we will use the NumPy library. This library used for manipulating multidimensional array in a very efficient way. Let’s discuss a few ways to find Euclidean distance by NumPy library.

Method #1: Using linalg.norm()

## Python3

 `# Python code to find Euclidean distance``# using linalg.norm()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# calculating Euclidean distance``# using linalg.norm()``dist ``=` `np.linalg.norm(point1 ``-` `point2)` `# printing Euclidean distance``print``(dist)`

Output:

`2.23606797749979`

Method #2: Using dot()

## Python3

 `# Python code to find Euclidean distance``# using dot()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# subtracting vector``temp ``=` `point1 ``-` `point2` `# doing dot product``# for finding``# sum of the squares``sum_sq ``=` `np.dot(temp.T, temp)` `# Doing squareroot and``# printing Euclidean distance``print``(np.sqrt(sum_sq))`

Output:

`2.23606797749979`

Method #3: Using square() and sum()

## Python3

 `# Python code to find Euclidean distance``# using sum() and square()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# finding sum of squares``sum_sq ``=` `np.``sum``(np.square(point1 ``-` `point2))` `# Doing squareroot and``# printing Euclidean distance``print``(np.sqrt(sum_sq))`

Output:

`2.23606797749979`

My Personal Notes arrow_drop_up