Calculate MDAS Factorial of given number

Given an integer N, the task is to find the MDAS factorial.

The general factorial of a no. N is given by :

Factorial(N) = (N)*(N-1)*(N-2)*(N-3)*(N-4)*(N-5)*(N-6)*(N-7)- – – – – -(3)*(2)*(1).



In MDAS factorial, instead of simply multiplying the numbers from N to 1, we perform four operations, Multiplication(*), Divide(/), Addition(+) and Subtraction(-) in a repeating pattern as shown below:

MDAS_Factorial(N) = (N) * (N-1) / (N-2) + (N-3) – (N-4) – – – – – upto 1.

By using the integers in decreasing order, we swap the multiplication operations for fixed rotation of operations: multiply (*), divide (/), add (+) and subtract (-) in the above order.

Examples:

Input : N = 4
Output : 7
Explanation : MDAS_Factorial(4) = 4 * 3 / 2 + 1 = 7

Input : N = 10
Output : 12
Explanation : 
MDAS_Factorial(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1 = 12

Simple Approach: : The idea is to use a loop for each cycle of operations (*,/,+,-) and calculate the MDAS_Factorial of N. But this may work slow if N is very large. Time Complexity of this approach is O(N).

Efficient Approach :
If we observe carefully it can be concluded that:

  1. If N is less than or equal to 2 then answer will be N itself.
  2. If N is 3 OR N is 4, the answer is N + 3.
  3. If (N – 4) is completely divisible by 4, the answer is N + 1.
  4. If (N – 4) gives remainder 1 OR 2 while dividing by 4, the answer is N + 2.
  5. For the remaining values, the answer will be N – 1.

Below is the implementation of above approach

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find MDAS_Factorial
#include <bits/stdc++.h>
using namespace std;
  
// Program to find MDAS_factorial
int MDAS_Factorial(int N)
{
    if (N <= 2)
        return N;
  
    if (N <= 4)
        return (N + 3);
  
    if ((N - 4) % 4 == 0)
        return (N + 1);
  
    else if ((N - 4) % 4 <= 2)
        return (N + 2);
  
    else
        return (N - 1);
}
  
// Driver code
int main()
{
  
    int N = 4;
    cout << MDAS_Factorial(N) << endl;
    N = 10;
    cout << MDAS_Factorial(N) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program find MDAS_Factorial
import java.util.*;
  
class Count {
    public static int MDAS_Factorial(int N)
    {
        if (N <= 2)
            return N;
  
        if (N <= 4)
            return (N + 3);
  
        if ((N - 4) % 4 == 0)
            return (N + 1);
  
        else if ((N - 4) % 4 <= 2)
            return (N + 2);
  
        else
            return (N - 1);
    }
  
    public static void main(String[] args)
    {
        int N = 4;
        System.out.println(MDAS_Factorial(N));
  
        N = 10;
        System.out.println(MDAS_Factorial(N));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code find MDAS_Factorial
def MDAS_Factorial( N ):
      
    if N <= 2:
        return N
  
    if N <= 4:
        return N + 3
          
    if (N - 4) % 4 == 0:
        return N + 1
  
    elif (N - 4) % 4 <= 2:
         return N + 2
  
    else:
         return N - 1
  
# Driver code
N = 4  
print(MDAS_Factorial( N ) )
  
N = 10 
print(MDAS_Factorial( N ) )

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find MDAS_Factorial
using System;
  
class Count {
    public static int MDAS_Factorial(int N)
    {
        if (N <= 2)
            return N;
  
        if (N <= 4)
            return (N + 3);
  
        if ((N - 4) % 4 == 0)
            return (N + 1);
  
        else if ((N - 4) % 4 <= 2)
            return (N + 2);
  
        else
            return (N - 1);
    }
  
    // Driver code
    public static void Main()
    {
        int N = 4;
        Console.WriteLine(MDAS_Factorial(N));
  
        N = 10;
        Console.WriteLine(MDAS_Factorial(N));
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program 
// Program to find MDAS_factorial
function MDAS_Factorial($N)
{
    if ($N <= 2)
          return N;
  
    if ($N <= 4)
          return ($N + 3);
  
    if (($N - 4) % 4 == 0)
          return ($N + 1);
  
    else if (($N - 4) % 4 <= 2)
          return ($N + 2);
  
    else
          return ($N - 1);
}
  
// Driver code
$N  = 4;
echo MDAS_Factorial($N);
echo("\n");
$N  = 10;
echo MDAS_Factorial($N);
?>

chevron_right



Output :

7
12

Time complexity: O(1)
Auxiliary space: O(1)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Akanksha_Rai