Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

C Program for N Queen Problem | Backtracking-3

  • Last Updated : 16 Aug, 2021

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other. For example, the following is a solution for 4 Queen problem.

We provide nothing but the best curated videos and practice problems for our students. Check out the C Foundation Course and master the C language from basic to advanced level. Wait no more, start learning today!

The expected output is a binary matrix which has 1s for the blocks where queens are placed. For example, the following is the output matrix for above 4 queen solution.

              { 0,  1,  0,  0}
              { 0,  0,  0,  1}
              { 1,  0,  0,  0}
              { 0,  0,  1,  0}

C++




/* C/C++ program to solve N Queen Problem using
   backtracking */
#define N 4
#include <stdbool.h>
#include <stdio.h>
 
/* A utility function to print solution */
void printSolution(int board[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++)
            printf(" %d ", board[i][j]);
        printf("\n");
    }
}
 
/* A utility function to check if a queen can
   be placed on board[row][col]. Note that this
   function is called when "col" queens are
   already placed in columns from 0 to col -1.
   So we need to check only left side for
   attacking queens */
bool isSafe(int board[N][N], int row, int col)
{
    int i, j;
 
    /* Check this row on left side */
    for (i = 0; i < col; i++)
        if (board[row][i])
            return false;
 
    /* Check upper diagonal on left side */
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
        if (board[i][j])
            return false;
 
    /* Check lower diagonal on left side */
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
        if (board[i][j])
            return false;
 
    return true;
}
 
/* A recursive utility function to solve N
   Queen problem */
bool solveNQUtil(int board[N][N], int col)
{
    /* base case: If all queens are placed
      then return true */
    if (col >= N)
        return true;
 
    /* Consider this column and try placing
       this queen in all rows one by one */
    for (int i = 0; i < N; i++) {
        /* Check if the queen can be placed on
          board[i][col] */
        if (isSafe(board, i, col)) {
            /* Place this queen in board[i][col] */
            board[i][col] = 1;
 
            /* recur to place rest of the queens */
            if (solveNQUtil(board, col + 1))
                return true;
 
            /* If placing queen in board[i][col]
               doesn't lead to a solution, then
               remove queen from board[i][col] */
            board[i][col] = 0; // BACKTRACK
        }
    }
 
    /* If the queen cannot be placed in any row in
        this column col  then return false */
    return false;
}
 
/* This function solves the N Queen problem using
   Backtracking. It mainly uses solveNQUtil() to
   solve the problem. It returns false if queens
   cannot be placed, otherwise, return true and
   prints placement of queens in the form of 1s.
   Please note that there may be more than one
   solutions, this function prints one  of the
   feasible solutions.*/
bool solveNQ()
{
    int board[N][N] = { { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 } };
 
    if (solveNQUtil(board, 0) == false) {
        printf("Solution does not exist");
        return false;
    }
 
    printSolution(board);
    return true;
}
 
// driver program to test above function
int main()
{
    solveNQ();
    return 0;
}
Output:
0  0  1  0 
1  0  0  0 
0  0  0  1 
0  1  0  0

 

Please refer complete article on N Queen Problem | Backtracking-3 for more details!
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :